ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1m1nn Unicode version

Theorem nn1m1nn 8955
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn1m1nn  |-  ( A  e.  NN  ->  ( A  =  1  \/  ( A  -  1
)  e.  NN ) )

Proof of Theorem nn1m1nn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 713 . . 3  |-  ( x  =  1  ->  (
x  =  1  \/  ( x  -  1 )  e.  NN ) )
2 1cnd 7991 . . 3  |-  ( x  =  1  ->  1  e.  CC )
31, 22thd 175 . 2  |-  ( x  =  1  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  1  e.  CC ) )
4 eqeq1 2196 . . 3  |-  ( x  =  y  ->  (
x  =  1  <->  y  =  1 ) )
5 oveq1 5898 . . . 4  |-  ( x  =  y  ->  (
x  -  1 )  =  ( y  - 
1 ) )
65eleq1d 2258 . . 3  |-  ( x  =  y  ->  (
( x  -  1 )  e.  NN  <->  ( y  -  1 )  e.  NN ) )
74, 6orbi12d 794 . 2  |-  ( x  =  y  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  ( y  =  1  \/  ( y  - 
1 )  e.  NN ) ) )
8 eqeq1 2196 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
x  =  1  <->  (
y  +  1 )  =  1 ) )
9 oveq1 5898 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x  -  1 )  =  ( ( y  +  1 )  - 
1 ) )
109eleq1d 2258 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( x  -  1 )  e.  NN  <->  ( (
y  +  1 )  -  1 )  e.  NN ) )
118, 10orbi12d 794 . 2  |-  ( x  =  ( y  +  1 )  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  ( ( y  +  1 )  =  1  \/  ( ( y  +  1 )  - 
1 )  e.  NN ) ) )
12 eqeq1 2196 . . 3  |-  ( x  =  A  ->  (
x  =  1  <->  A  =  1 ) )
13 oveq1 5898 . . . 4  |-  ( x  =  A  ->  (
x  -  1 )  =  ( A  - 
1 ) )
1413eleq1d 2258 . . 3  |-  ( x  =  A  ->  (
( x  -  1 )  e.  NN  <->  ( A  -  1 )  e.  NN ) )
1512, 14orbi12d 794 . 2  |-  ( x  =  A  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  ( A  =  1  \/  ( A  - 
1 )  e.  NN ) ) )
16 ax-1cn 7922 . 2  |-  1  e.  CC
17 nncn 8945 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  CC )
18 pncan 8181 . . . . . 6  |-  ( ( y  e.  CC  /\  1  e.  CC )  ->  ( ( y  +  1 )  -  1 )  =  y )
1917, 16, 18sylancl 413 . . . . 5  |-  ( y  e.  NN  ->  (
( y  +  1 )  -  1 )  =  y )
20 id 19 . . . . 5  |-  ( y  e.  NN  ->  y  e.  NN )
2119, 20eqeltrd 2266 . . . 4  |-  ( y  e.  NN  ->  (
( y  +  1 )  -  1 )  e.  NN )
2221olcd 735 . . 3  |-  ( y  e.  NN  ->  (
( y  +  1 )  =  1  \/  ( ( y  +  1 )  -  1 )  e.  NN ) )
2322a1d 22 . 2  |-  ( y  e.  NN  ->  (
( y  =  1  \/  ( y  - 
1 )  e.  NN )  ->  ( ( y  +  1 )  =  1  \/  ( ( y  +  1 )  -  1 )  e.  NN ) ) )
243, 7, 11, 15, 16, 23nnind 8953 1  |-  ( A  e.  NN  ->  ( A  =  1  \/  ( A  -  1
)  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2160  (class class class)co 5891   CCcc 7827   1c1 7830    + caddc 7832    - cmin 8146   NNcn 8937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-sub 8148  df-inn 8938
This theorem is referenced by:  nn1suc  8956  nnsub  8976  nnm1nn0  9235  nn0ge2m1nn  9254
  Copyright terms: Public domain W3C validator