ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1m1nn Unicode version

Theorem nn1m1nn 9089
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn1m1nn  |-  ( A  e.  NN  ->  ( A  =  1  \/  ( A  -  1
)  e.  NN ) )

Proof of Theorem nn1m1nn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 714 . . 3  |-  ( x  =  1  ->  (
x  =  1  \/  ( x  -  1 )  e.  NN ) )
2 1cnd 8123 . . 3  |-  ( x  =  1  ->  1  e.  CC )
31, 22thd 175 . 2  |-  ( x  =  1  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  1  e.  CC ) )
4 eqeq1 2214 . . 3  |-  ( x  =  y  ->  (
x  =  1  <->  y  =  1 ) )
5 oveq1 5974 . . . 4  |-  ( x  =  y  ->  (
x  -  1 )  =  ( y  - 
1 ) )
65eleq1d 2276 . . 3  |-  ( x  =  y  ->  (
( x  -  1 )  e.  NN  <->  ( y  -  1 )  e.  NN ) )
74, 6orbi12d 795 . 2  |-  ( x  =  y  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  ( y  =  1  \/  ( y  - 
1 )  e.  NN ) ) )
8 eqeq1 2214 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
x  =  1  <->  (
y  +  1 )  =  1 ) )
9 oveq1 5974 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x  -  1 )  =  ( ( y  +  1 )  - 
1 ) )
109eleq1d 2276 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( x  -  1 )  e.  NN  <->  ( (
y  +  1 )  -  1 )  e.  NN ) )
118, 10orbi12d 795 . 2  |-  ( x  =  ( y  +  1 )  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  ( ( y  +  1 )  =  1  \/  ( ( y  +  1 )  - 
1 )  e.  NN ) ) )
12 eqeq1 2214 . . 3  |-  ( x  =  A  ->  (
x  =  1  <->  A  =  1 ) )
13 oveq1 5974 . . . 4  |-  ( x  =  A  ->  (
x  -  1 )  =  ( A  - 
1 ) )
1413eleq1d 2276 . . 3  |-  ( x  =  A  ->  (
( x  -  1 )  e.  NN  <->  ( A  -  1 )  e.  NN ) )
1512, 14orbi12d 795 . 2  |-  ( x  =  A  ->  (
( x  =  1  \/  ( x  - 
1 )  e.  NN ) 
<->  ( A  =  1  \/  ( A  - 
1 )  e.  NN ) ) )
16 ax-1cn 8053 . 2  |-  1  e.  CC
17 nncn 9079 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  CC )
18 pncan 8313 . . . . . 6  |-  ( ( y  e.  CC  /\  1  e.  CC )  ->  ( ( y  +  1 )  -  1 )  =  y )
1917, 16, 18sylancl 413 . . . . 5  |-  ( y  e.  NN  ->  (
( y  +  1 )  -  1 )  =  y )
20 id 19 . . . . 5  |-  ( y  e.  NN  ->  y  e.  NN )
2119, 20eqeltrd 2284 . . . 4  |-  ( y  e.  NN  ->  (
( y  +  1 )  -  1 )  e.  NN )
2221olcd 736 . . 3  |-  ( y  e.  NN  ->  (
( y  +  1 )  =  1  \/  ( ( y  +  1 )  -  1 )  e.  NN ) )
2322a1d 22 . 2  |-  ( y  e.  NN  ->  (
( y  =  1  \/  ( y  - 
1 )  e.  NN )  ->  ( ( y  +  1 )  =  1  \/  ( ( y  +  1 )  -  1 )  e.  NN ) ) )
243, 7, 11, 15, 16, 23nnind 9087 1  |-  ( A  e.  NN  ->  ( A  =  1  \/  ( A  -  1
)  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    - cmin 8278   NNcn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280  df-inn 9072
This theorem is referenced by:  nn1suc  9090  nnsub  9110  nnm1nn0  9371  nn0ge2m1nn  9390
  Copyright terms: Public domain W3C validator