Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnind | Unicode version |
Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 8885 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
Ref | Expression |
---|---|
nnind.1 | |
nnind.2 | |
nnind.3 | |
nnind.4 | |
nnind.5 | |
nnind.6 |
Ref | Expression |
---|---|
nnind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8876 | . . . . . 6 | |
2 | nnind.5 | . . . . . 6 | |
3 | nnind.1 | . . . . . . 7 | |
4 | 3 | elrab 2886 | . . . . . 6 |
5 | 1, 2, 4 | mpbir2an 937 | . . . . 5 |
6 | elrabi 2883 | . . . . . . 7 | |
7 | peano2nn 8877 | . . . . . . . . . 10 | |
8 | 7 | a1d 22 | . . . . . . . . 9 |
9 | nnind.6 | . . . . . . . . 9 | |
10 | 8, 9 | anim12d 333 | . . . . . . . 8 |
11 | nnind.2 | . . . . . . . . 9 | |
12 | 11 | elrab 2886 | . . . . . . . 8 |
13 | nnind.3 | . . . . . . . . 9 | |
14 | 13 | elrab 2886 | . . . . . . . 8 |
15 | 10, 12, 14 | 3imtr4g 204 | . . . . . . 7 |
16 | 6, 15 | mpcom 36 | . . . . . 6 |
17 | 16 | rgen 2523 | . . . . 5 |
18 | peano5nni 8868 | . . . . 5 | |
19 | 5, 17, 18 | mp2an 424 | . . . 4 |
20 | 19 | sseli 3143 | . . 3 |
21 | nnind.4 | . . . 4 | |
22 | 21 | elrab 2886 | . . 3 |
23 | 20, 22 | sylib 121 | . 2 |
24 | 23 | simprd 113 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 crab 2452 wss 3121 (class class class)co 5850 c1 7762 caddc 7764 cn 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5853 df-inn 8866 |
This theorem is referenced by: nnindALT 8882 nn1m1nn 8883 nnaddcl 8885 nnmulcl 8886 nnge1 8888 nn1gt1 8899 nnsub 8904 zaddcllempos 9236 zaddcllemneg 9238 nneoor 9301 peano5uzti 9307 nn0ind-raph 9316 indstr 9539 exbtwnzlemshrink 10192 exp3vallem 10464 expcllem 10474 expap0 10493 apexp1 10639 seq3coll 10764 resqrexlemover 10961 resqrexlemlo 10964 resqrexlemcalc3 10967 gcdmultiple 11962 rplpwr 11969 prmind2 12061 prmdvdsexp 12089 sqrt2irr 12103 pw2dvdslemn 12106 pcmpt 12282 prmpwdvds 12294 dvexp 13428 2sqlem10 13714 |
Copyright terms: Public domain | W3C validator |