Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnind | Unicode version |
Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 8877 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
Ref | Expression |
---|---|
nnind.1 | |
nnind.2 | |
nnind.3 | |
nnind.4 | |
nnind.5 | |
nnind.6 |
Ref | Expression |
---|---|
nnind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8868 | . . . . . 6 | |
2 | nnind.5 | . . . . . 6 | |
3 | nnind.1 | . . . . . . 7 | |
4 | 3 | elrab 2882 | . . . . . 6 |
5 | 1, 2, 4 | mpbir2an 932 | . . . . 5 |
6 | elrabi 2879 | . . . . . . 7 | |
7 | peano2nn 8869 | . . . . . . . . . 10 | |
8 | 7 | a1d 22 | . . . . . . . . 9 |
9 | nnind.6 | . . . . . . . . 9 | |
10 | 8, 9 | anim12d 333 | . . . . . . . 8 |
11 | nnind.2 | . . . . . . . . 9 | |
12 | 11 | elrab 2882 | . . . . . . . 8 |
13 | nnind.3 | . . . . . . . . 9 | |
14 | 13 | elrab 2882 | . . . . . . . 8 |
15 | 10, 12, 14 | 3imtr4g 204 | . . . . . . 7 |
16 | 6, 15 | mpcom 36 | . . . . . 6 |
17 | 16 | rgen 2519 | . . . . 5 |
18 | peano5nni 8860 | . . . . 5 | |
19 | 5, 17, 18 | mp2an 423 | . . . 4 |
20 | 19 | sseli 3138 | . . 3 |
21 | nnind.4 | . . . 4 | |
22 | 21 | elrab 2882 | . . 3 |
23 | 20, 22 | sylib 121 | . 2 |
24 | 23 | simprd 113 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 crab 2448 wss 3116 (class class class)co 5842 c1 7754 caddc 7756 cn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 |
This theorem is referenced by: nnindALT 8874 nn1m1nn 8875 nnaddcl 8877 nnmulcl 8878 nnge1 8880 nn1gt1 8891 nnsub 8896 zaddcllempos 9228 zaddcllemneg 9230 nneoor 9293 peano5uzti 9299 nn0ind-raph 9308 indstr 9531 exbtwnzlemshrink 10184 exp3vallem 10456 expcllem 10466 expap0 10485 apexp1 10631 seq3coll 10755 resqrexlemover 10952 resqrexlemlo 10955 resqrexlemcalc3 10958 gcdmultiple 11953 rplpwr 11960 prmind2 12052 prmdvdsexp 12080 sqrt2irr 12094 pw2dvdslemn 12097 pcmpt 12273 prmpwdvds 12285 dvexp 13315 2sqlem10 13601 |
Copyright terms: Public domain | W3C validator |