| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnind | Unicode version | ||
| Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 9091 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnind.1 |
|
| nnind.2 |
|
| nnind.3 |
|
| nnind.4 |
|
| nnind.5 |
|
| nnind.6 |
|
| Ref | Expression |
|---|---|
| nnind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9082 |
. . . . . 6
| |
| 2 | nnind.5 |
. . . . . 6
| |
| 3 | nnind.1 |
. . . . . . 7
| |
| 4 | 3 | elrab 2936 |
. . . . . 6
|
| 5 | 1, 2, 4 | mpbir2an 945 |
. . . . 5
|
| 6 | elrabi 2933 |
. . . . . . 7
| |
| 7 | peano2nn 9083 |
. . . . . . . . . 10
| |
| 8 | 7 | a1d 22 |
. . . . . . . . 9
|
| 9 | nnind.6 |
. . . . . . . . 9
| |
| 10 | 8, 9 | anim12d 335 |
. . . . . . . 8
|
| 11 | nnind.2 |
. . . . . . . . 9
| |
| 12 | 11 | elrab 2936 |
. . . . . . . 8
|
| 13 | nnind.3 |
. . . . . . . . 9
| |
| 14 | 13 | elrab 2936 |
. . . . . . . 8
|
| 15 | 10, 12, 14 | 3imtr4g 205 |
. . . . . . 7
|
| 16 | 6, 15 | mpcom 36 |
. . . . . 6
|
| 17 | 16 | rgen 2561 |
. . . . 5
|
| 18 | peano5nni 9074 |
. . . . 5
| |
| 19 | 5, 17, 18 | mp2an 426 |
. . . 4
|
| 20 | 19 | sseli 3197 |
. . 3
|
| 21 | nnind.4 |
. . . 4
| |
| 22 | 21 | elrab 2936 |
. . 3
|
| 23 | 20, 22 | sylib 122 |
. 2
|
| 24 | 23 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 |
| This theorem is referenced by: nnindALT 9088 nn1m1nn 9089 nnaddcl 9091 nnmulcl 9092 nnge1 9094 nn1gt1 9105 nnsub 9110 zaddcllempos 9444 zaddcllemneg 9446 nneoor 9510 peano5uzti 9516 nn0ind-raph 9525 indstr 9749 exbtwnzlemshrink 10428 exp3vallem 10722 expcllem 10732 expap0 10751 apexp1 10900 seq3coll 11024 resqrexlemover 11436 resqrexlemlo 11439 resqrexlemcalc3 11442 gcdmultiple 12456 rplpwr 12463 prmind2 12557 prmdvdsexp 12585 sqrt2irr 12599 pw2dvdslemn 12602 pcmpt 12781 prmpwdvds 12793 mulgnnass 13608 dvexp 15298 plycolemc 15345 2sqlem10 15717 |
| Copyright terms: Public domain | W3C validator |