| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnind | Unicode version | ||
| Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 9056 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnind.1 |
|
| nnind.2 |
|
| nnind.3 |
|
| nnind.4 |
|
| nnind.5 |
|
| nnind.6 |
|
| Ref | Expression |
|---|---|
| nnind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9047 |
. . . . . 6
| |
| 2 | nnind.5 |
. . . . . 6
| |
| 3 | nnind.1 |
. . . . . . 7
| |
| 4 | 3 | elrab 2929 |
. . . . . 6
|
| 5 | 1, 2, 4 | mpbir2an 945 |
. . . . 5
|
| 6 | elrabi 2926 |
. . . . . . 7
| |
| 7 | peano2nn 9048 |
. . . . . . . . . 10
| |
| 8 | 7 | a1d 22 |
. . . . . . . . 9
|
| 9 | nnind.6 |
. . . . . . . . 9
| |
| 10 | 8, 9 | anim12d 335 |
. . . . . . . 8
|
| 11 | nnind.2 |
. . . . . . . . 9
| |
| 12 | 11 | elrab 2929 |
. . . . . . . 8
|
| 13 | nnind.3 |
. . . . . . . . 9
| |
| 14 | 13 | elrab 2929 |
. . . . . . . 8
|
| 15 | 10, 12, 14 | 3imtr4g 205 |
. . . . . . 7
|
| 16 | 6, 15 | mpcom 36 |
. . . . . 6
|
| 17 | 16 | rgen 2559 |
. . . . 5
|
| 18 | peano5nni 9039 |
. . . . 5
| |
| 19 | 5, 17, 18 | mp2an 426 |
. . . 4
|
| 20 | 19 | sseli 3189 |
. . 3
|
| 21 | nnind.4 |
. . . 4
| |
| 22 | 21 | elrab 2929 |
. . 3
|
| 23 | 20, 22 | sylib 122 |
. 2
|
| 24 | 23 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 |
| This theorem is referenced by: nnindALT 9053 nn1m1nn 9054 nnaddcl 9056 nnmulcl 9057 nnge1 9059 nn1gt1 9070 nnsub 9075 zaddcllempos 9409 zaddcllemneg 9411 nneoor 9475 peano5uzti 9481 nn0ind-raph 9490 indstr 9714 exbtwnzlemshrink 10391 exp3vallem 10685 expcllem 10695 expap0 10714 apexp1 10863 seq3coll 10987 resqrexlemover 11321 resqrexlemlo 11324 resqrexlemcalc3 11327 gcdmultiple 12341 rplpwr 12348 prmind2 12442 prmdvdsexp 12470 sqrt2irr 12484 pw2dvdslemn 12487 pcmpt 12666 prmpwdvds 12678 mulgnnass 13493 dvexp 15183 plycolemc 15230 2sqlem10 15602 |
| Copyright terms: Public domain | W3C validator |