| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnind | Unicode version | ||
| Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 9130 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnind.1 |
|
| nnind.2 |
|
| nnind.3 |
|
| nnind.4 |
|
| nnind.5 |
|
| nnind.6 |
|
| Ref | Expression |
|---|---|
| nnind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9121 |
. . . . . 6
| |
| 2 | nnind.5 |
. . . . . 6
| |
| 3 | nnind.1 |
. . . . . . 7
| |
| 4 | 3 | elrab 2959 |
. . . . . 6
|
| 5 | 1, 2, 4 | mpbir2an 948 |
. . . . 5
|
| 6 | elrabi 2956 |
. . . . . . 7
| |
| 7 | peano2nn 9122 |
. . . . . . . . . 10
| |
| 8 | 7 | a1d 22 |
. . . . . . . . 9
|
| 9 | nnind.6 |
. . . . . . . . 9
| |
| 10 | 8, 9 | anim12d 335 |
. . . . . . . 8
|
| 11 | nnind.2 |
. . . . . . . . 9
| |
| 12 | 11 | elrab 2959 |
. . . . . . . 8
|
| 13 | nnind.3 |
. . . . . . . . 9
| |
| 14 | 13 | elrab 2959 |
. . . . . . . 8
|
| 15 | 10, 12, 14 | 3imtr4g 205 |
. . . . . . 7
|
| 16 | 6, 15 | mpcom 36 |
. . . . . 6
|
| 17 | 16 | rgen 2583 |
. . . . 5
|
| 18 | peano5nni 9113 |
. . . . 5
| |
| 19 | 5, 17, 18 | mp2an 426 |
. . . 4
|
| 20 | 19 | sseli 3220 |
. . 3
|
| 21 | nnind.4 |
. . . 4
| |
| 22 | 21 | elrab 2959 |
. . 3
|
| 23 | 20, 22 | sylib 122 |
. 2
|
| 24 | 23 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 |
| This theorem is referenced by: nnindALT 9127 nn1m1nn 9128 nnaddcl 9130 nnmulcl 9131 nnge1 9133 nn1gt1 9144 nnsub 9149 zaddcllempos 9483 zaddcllemneg 9485 nneoor 9549 peano5uzti 9555 nn0ind-raph 9564 indstr 9788 exbtwnzlemshrink 10468 exp3vallem 10762 expcllem 10772 expap0 10791 apexp1 10940 seq3coll 11064 resqrexlemover 11521 resqrexlemlo 11524 resqrexlemcalc3 11527 gcdmultiple 12541 rplpwr 12548 prmind2 12642 prmdvdsexp 12670 sqrt2irr 12684 pw2dvdslemn 12687 pcmpt 12866 prmpwdvds 12878 mulgnnass 13694 dvexp 15385 plycolemc 15432 2sqlem10 15804 |
| Copyright terms: Public domain | W3C validator |