| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnind | Unicode version | ||
| Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 9058 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnind.1 |
|
| nnind.2 |
|
| nnind.3 |
|
| nnind.4 |
|
| nnind.5 |
|
| nnind.6 |
|
| Ref | Expression |
|---|---|
| nnind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9049 |
. . . . . 6
| |
| 2 | nnind.5 |
. . . . . 6
| |
| 3 | nnind.1 |
. . . . . . 7
| |
| 4 | 3 | elrab 2929 |
. . . . . 6
|
| 5 | 1, 2, 4 | mpbir2an 945 |
. . . . 5
|
| 6 | elrabi 2926 |
. . . . . . 7
| |
| 7 | peano2nn 9050 |
. . . . . . . . . 10
| |
| 8 | 7 | a1d 22 |
. . . . . . . . 9
|
| 9 | nnind.6 |
. . . . . . . . 9
| |
| 10 | 8, 9 | anim12d 335 |
. . . . . . . 8
|
| 11 | nnind.2 |
. . . . . . . . 9
| |
| 12 | 11 | elrab 2929 |
. . . . . . . 8
|
| 13 | nnind.3 |
. . . . . . . . 9
| |
| 14 | 13 | elrab 2929 |
. . . . . . . 8
|
| 15 | 10, 12, 14 | 3imtr4g 205 |
. . . . . . 7
|
| 16 | 6, 15 | mpcom 36 |
. . . . . 6
|
| 17 | 16 | rgen 2559 |
. . . . 5
|
| 18 | peano5nni 9041 |
. . . . 5
| |
| 19 | 5, 17, 18 | mp2an 426 |
. . . 4
|
| 20 | 19 | sseli 3189 |
. . 3
|
| 21 | nnind.4 |
. . . 4
| |
| 22 | 21 | elrab 2929 |
. . 3
|
| 23 | 20, 22 | sylib 122 |
. 2
|
| 24 | 23 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 |
| This theorem is referenced by: nnindALT 9055 nn1m1nn 9056 nnaddcl 9058 nnmulcl 9059 nnge1 9061 nn1gt1 9072 nnsub 9077 zaddcllempos 9411 zaddcllemneg 9413 nneoor 9477 peano5uzti 9483 nn0ind-raph 9492 indstr 9716 exbtwnzlemshrink 10393 exp3vallem 10687 expcllem 10697 expap0 10716 apexp1 10865 seq3coll 10989 resqrexlemover 11354 resqrexlemlo 11357 resqrexlemcalc3 11360 gcdmultiple 12374 rplpwr 12381 prmind2 12475 prmdvdsexp 12503 sqrt2irr 12517 pw2dvdslemn 12520 pcmpt 12699 prmpwdvds 12711 mulgnnass 13526 dvexp 15216 plycolemc 15263 2sqlem10 15635 |
| Copyright terms: Public domain | W3C validator |