ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnind Unicode version

Theorem nnind 9087
Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 9091 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Hypotheses
Ref Expression
nnind.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
nnind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
nnind.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
nnind.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
nnind.5  |-  ps
nnind.6  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
Assertion
Ref Expression
nnind  |-  ( A  e.  NN  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem nnind
StepHypRef Expression
1 1nn 9082 . . . . . 6  |-  1  e.  NN
2 nnind.5 . . . . . 6  |-  ps
3 nnind.1 . . . . . . 7  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
43elrab 2936 . . . . . 6  |-  ( 1  e.  { x  e.  NN  |  ph }  <->  ( 1  e.  NN  /\  ps ) )
51, 2, 4mpbir2an 945 . . . . 5  |-  1  e.  { x  e.  NN  |  ph }
6 elrabi 2933 . . . . . . 7  |-  ( y  e.  { x  e.  NN  |  ph }  ->  y  e.  NN )
7 peano2nn 9083 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
87a1d 22 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
y  e.  NN  ->  ( y  +  1 )  e.  NN ) )
9 nnind.6 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
108, 9anim12d 335 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( y  e.  NN  /\ 
ch )  ->  (
( y  +  1 )  e.  NN  /\  th ) ) )
11 nnind.2 . . . . . . . . 9  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1211elrab 2936 . . . . . . . 8  |-  ( y  e.  { x  e.  NN  |  ph }  <->  ( y  e.  NN  /\  ch ) )
13 nnind.3 . . . . . . . . 9  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
1413elrab 2936 . . . . . . . 8  |-  ( ( y  +  1 )  e.  { x  e.  NN  |  ph }  <->  ( ( y  +  1 )  e.  NN  /\  th ) )
1510, 12, 143imtr4g 205 . . . . . . 7  |-  ( y  e.  NN  ->  (
y  e.  { x  e.  NN  |  ph }  ->  ( y  +  1 )  e.  { x  e.  NN  |  ph }
) )
166, 15mpcom 36 . . . . . 6  |-  ( y  e.  { x  e.  NN  |  ph }  ->  ( y  +  1 )  e.  { x  e.  NN  |  ph }
)
1716rgen 2561 . . . . 5  |-  A. y  e.  { x  e.  NN  |  ph }  ( y  +  1 )  e. 
{ x  e.  NN  |  ph }
18 peano5nni 9074 . . . . 5  |-  ( ( 1  e.  { x  e.  NN  |  ph }  /\  A. y  e.  {
x  e.  NN  |  ph }  ( y  +  1 )  e.  {
x  e.  NN  |  ph } )  ->  NN  C_ 
{ x  e.  NN  |  ph } )
195, 17, 18mp2an 426 . . . 4  |-  NN  C_  { x  e.  NN  |  ph }
2019sseli 3197 . . 3  |-  ( A  e.  NN  ->  A  e.  { x  e.  NN  |  ph } )
21 nnind.4 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2221elrab 2936 . . 3  |-  ( A  e.  { x  e.  NN  |  ph }  <->  ( A  e.  NN  /\  ta ) )
2320, 22sylib 122 . 2  |-  ( A  e.  NN  ->  ( A  e.  NN  /\  ta ) )
2423simprd 114 1  |-  ( A  e.  NN  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490    C_ wss 3174  (class class class)co 5967   1c1 7961    + caddc 7963   NNcn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-inn 9072
This theorem is referenced by:  nnindALT  9088  nn1m1nn  9089  nnaddcl  9091  nnmulcl  9092  nnge1  9094  nn1gt1  9105  nnsub  9110  zaddcllempos  9444  zaddcllemneg  9446  nneoor  9510  peano5uzti  9516  nn0ind-raph  9525  indstr  9749  exbtwnzlemshrink  10428  exp3vallem  10722  expcllem  10732  expap0  10751  apexp1  10900  seq3coll  11024  resqrexlemover  11436  resqrexlemlo  11439  resqrexlemcalc3  11442  gcdmultiple  12456  rplpwr  12463  prmind2  12557  prmdvdsexp  12585  sqrt2irr  12599  pw2dvdslemn  12602  pcmpt  12781  prmpwdvds  12793  mulgnnass  13608  dvexp  15298  plycolemc  15345  2sqlem10  15717
  Copyright terms: Public domain W3C validator