| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnind | Unicode version | ||
| Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 9027 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnind.1 |
|
| nnind.2 |
|
| nnind.3 |
|
| nnind.4 |
|
| nnind.5 |
|
| nnind.6 |
|
| Ref | Expression |
|---|---|
| nnind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9018 |
. . . . . 6
| |
| 2 | nnind.5 |
. . . . . 6
| |
| 3 | nnind.1 |
. . . . . . 7
| |
| 4 | 3 | elrab 2920 |
. . . . . 6
|
| 5 | 1, 2, 4 | mpbir2an 944 |
. . . . 5
|
| 6 | elrabi 2917 |
. . . . . . 7
| |
| 7 | peano2nn 9019 |
. . . . . . . . . 10
| |
| 8 | 7 | a1d 22 |
. . . . . . . . 9
|
| 9 | nnind.6 |
. . . . . . . . 9
| |
| 10 | 8, 9 | anim12d 335 |
. . . . . . . 8
|
| 11 | nnind.2 |
. . . . . . . . 9
| |
| 12 | 11 | elrab 2920 |
. . . . . . . 8
|
| 13 | nnind.3 |
. . . . . . . . 9
| |
| 14 | 13 | elrab 2920 |
. . . . . . . 8
|
| 15 | 10, 12, 14 | 3imtr4g 205 |
. . . . . . 7
|
| 16 | 6, 15 | mpcom 36 |
. . . . . 6
|
| 17 | 16 | rgen 2550 |
. . . . 5
|
| 18 | peano5nni 9010 |
. . . . 5
| |
| 19 | 5, 17, 18 | mp2an 426 |
. . . 4
|
| 20 | 19 | sseli 3180 |
. . 3
|
| 21 | nnind.4 |
. . . 4
| |
| 22 | 21 | elrab 2920 |
. . 3
|
| 23 | 20, 22 | sylib 122 |
. 2
|
| 24 | 23 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 |
| This theorem is referenced by: nnindALT 9024 nn1m1nn 9025 nnaddcl 9027 nnmulcl 9028 nnge1 9030 nn1gt1 9041 nnsub 9046 zaddcllempos 9380 zaddcllemneg 9382 nneoor 9445 peano5uzti 9451 nn0ind-raph 9460 indstr 9684 exbtwnzlemshrink 10355 exp3vallem 10649 expcllem 10659 expap0 10678 apexp1 10827 seq3coll 10951 resqrexlemover 11192 resqrexlemlo 11195 resqrexlemcalc3 11198 gcdmultiple 12212 rplpwr 12219 prmind2 12313 prmdvdsexp 12341 sqrt2irr 12355 pw2dvdslemn 12358 pcmpt 12537 prmpwdvds 12549 mulgnnass 13363 dvexp 15031 plycolemc 15078 2sqlem10 15450 |
| Copyright terms: Public domain | W3C validator |