Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnindALT | GIF version |
Description: Principle of Mathematical
Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 8906 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nnindALT.6 | ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) |
nnindALT.5 | ⊢ 𝜓 |
nnindALT.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
nnindALT.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
nnindALT.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
nnindALT.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
Ref | Expression |
---|---|
nnindALT | ⊢ (𝐴 ∈ ℕ → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnindALT.1 | . 2 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
2 | nnindALT.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
3 | nnindALT.3 | . 2 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
4 | nnindALT.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
5 | nnindALT.5 | . 2 ⊢ 𝜓 | |
6 | nnindALT.6 | . 2 ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) | |
7 | 1, 2, 3, 4, 5, 6 | nnind 8906 | 1 ⊢ (𝐴 ∈ ℕ → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2146 (class class class)co 5865 1c1 7787 + caddc 7789 ℕcn 8890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-inn 8891 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |