| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnindALT | GIF version | ||
| Description: Principle of Mathematical
Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 9122 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| nnindALT.6 | ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) |
| nnindALT.5 | ⊢ 𝜓 |
| nnindALT.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
| nnindALT.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| nnindALT.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
| nnindALT.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| nnindALT | ⊢ (𝐴 ∈ ℕ → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnindALT.1 | . 2 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
| 2 | nnindALT.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 3 | nnindALT.3 | . 2 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
| 4 | nnindALT.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 5 | nnindALT.5 | . 2 ⊢ 𝜓 | |
| 6 | nnindALT.6 | . 2 ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) | |
| 7 | 1, 2, 3, 4, 5, 6 | nnind 9122 | 1 ⊢ (𝐴 ∈ ℕ → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 1c1 7996 + caddc 7998 ℕcn 9106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |