ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnindALT GIF version

Theorem nnindALT 8895
Description: Principle of Mathematical Induction (inference schema). The last four hypotheses give us the substitution instances we need; the first two are the induction step and the basis.

This ALT version of nnind 8894 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.)

Hypotheses
Ref Expression
nnindALT.6 (𝑦 ∈ ℕ → (𝜒𝜃))
nnindALT.5 𝜓
nnindALT.1 (𝑥 = 1 → (𝜑𝜓))
nnindALT.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnindALT.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nnindALT.4 (𝑥 = 𝐴 → (𝜑𝜏))
Assertion
Ref Expression
nnindALT (𝐴 ∈ ℕ → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnindALT
StepHypRef Expression
1 nnindALT.1 . 2 (𝑥 = 1 → (𝜑𝜓))
2 nnindALT.2 . 2 (𝑥 = 𝑦 → (𝜑𝜒))
3 nnindALT.3 . 2 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
4 nnindALT.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
5 nnindALT.5 . 2 𝜓
6 nnindALT.6 . 2 (𝑦 ∈ ℕ → (𝜒𝜃))
71, 2, 3, 4, 5, 6nnind 8894 1 (𝐴 ∈ ℕ → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  (class class class)co 5853  1c1 7775   + caddc 7777  cn 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-inn 8879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator