Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnindALT | GIF version |
Description: Principle of Mathematical
Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 8894 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nnindALT.6 | ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) |
nnindALT.5 | ⊢ 𝜓 |
nnindALT.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
nnindALT.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
nnindALT.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
nnindALT.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
Ref | Expression |
---|---|
nnindALT | ⊢ (𝐴 ∈ ℕ → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnindALT.1 | . 2 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
2 | nnindALT.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
3 | nnindALT.3 | . 2 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
4 | nnindALT.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
5 | nnindALT.5 | . 2 ⊢ 𝜓 | |
6 | nnindALT.6 | . 2 ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) | |
7 | 1, 2, 3, 4, 5, 6 | nnind 8894 | 1 ⊢ (𝐴 ∈ ℕ → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 1c1 7775 + caddc 7777 ℕcn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |