| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqd | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) |
| Ref | Expression |
|---|---|
| oveq1d.1 |
|
| Ref | Expression |
|---|---|
| oveqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 |
. 2
| |
| 2 | oveq 5952 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: oveq123d 5967 oveqdr 5974 csbov12g 5986 ovmpodxf 6073 oprssov 6090 ofeqd 6162 ofeq 6163 fnmpoovd 6303 seqeq2 10598 prdsex 13134 prdsval 13138 pwsplusgval 13160 pwsmulrval 13161 imasex 13170 imasival 13171 plusffvalg 13227 mgm1 13235 grpidvalg 13238 grpidd 13248 gsumress 13260 sgrp1 13276 issgrpd 13277 ismndd 13302 issubmnd 13307 mnd1 13320 ismhm 13326 mhmex 13327 issubm 13337 resmhm 13352 resmhm2 13353 resmhm2b 13354 isgrp 13371 isgrpd2e 13385 grpidd2 13406 grpinvfvalg 13407 grp1 13471 imasgrp2 13479 imasgrp 13480 subg0 13549 subginv 13550 subgcl 13553 issubgrpd2 13559 isnsg 13571 nmznsg 13582 isghm 13612 resghm 13629 iscmn 13662 iscmnd 13667 imasabl 13705 rngass 13734 rngcl 13739 rngpropd 13750 dfur2g 13757 issrg 13760 srgcl 13765 srgass 13766 srgideu 13767 issrgid 13776 srgpcomp 13785 srgpcompp 13786 isring 13795 ringcl 13808 crngcom 13809 iscrng2 13810 ringass 13811 ringideu 13812 isringid 13820 ringidss 13824 ringpropd 13833 ring1 13854 opprmulg 13866 oppr0g 13876 oppr1g 13877 opprnegg 13878 mulgass3 13880 reldvdsrsrg 13887 dvdsrvald 13888 dvdsrd 13889 opprunitd 13905 dvrvald 13929 rdivmuldivd 13939 rhmmul 13959 isrhm2d 13960 rhmopp 13971 rhmunitinv 13973 islring 13987 lringuplu 13991 subrngmcl 14004 subrg1 14026 subrgmcl 14028 subrgdvds 14030 subrguss 14031 subrginv 14032 subrgdv 14033 subrgunit 14034 subrgugrp 14035 issubrg3 14042 rhmpropd 14049 rrgval 14057 aprval 14077 aprap 14081 islmod 14086 islmodd 14088 scaffvalg 14101 lmodpropd 14144 lsssetm 14151 islssmd 14154 islidlm 14274 lidlacl 14279 rnglidlmmgm 14291 rnglidlmsgrp 14292 rnglidlrng 14293 rspsn 14329 psrval 14461 psradd 14474 mpladd 14499 blfvalps 14890 lgseisenlem3 15582 lgseisenlem4 15583 |
| Copyright terms: Public domain | W3C validator |