| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqd | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) |
| Ref | Expression |
|---|---|
| oveq1d.1 |
|
| Ref | Expression |
|---|---|
| oveqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 |
. 2
| |
| 2 | oveq 5973 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: oveq123d 5988 oveqdr 5995 csbov12g 6007 ovmpodxf 6094 oprssov 6111 ofeqd 6183 ofeq 6184 fnmpoovd 6324 seqeq2 10633 prdsex 13216 prdsval 13220 pwsplusgval 13242 pwsmulrval 13243 imasex 13252 imasival 13253 plusffvalg 13309 mgm1 13317 grpidvalg 13320 grpidd 13330 gsumress 13342 sgrp1 13358 issgrpd 13359 ismndd 13384 issubmnd 13389 mnd1 13402 ismhm 13408 mhmex 13409 issubm 13419 resmhm 13434 resmhm2 13435 resmhm2b 13436 isgrp 13453 isgrpd2e 13467 grpidd2 13488 grpinvfvalg 13489 grp1 13553 imasgrp2 13561 imasgrp 13562 subg0 13631 subginv 13632 subgcl 13635 issubgrpd2 13641 isnsg 13653 nmznsg 13664 isghm 13694 resghm 13711 iscmn 13744 iscmnd 13749 imasabl 13787 rngass 13816 rngcl 13821 rngpropd 13832 dfur2g 13839 issrg 13842 srgcl 13847 srgass 13848 srgideu 13849 issrgid 13858 srgpcomp 13867 srgpcompp 13868 isring 13877 ringcl 13890 crngcom 13891 iscrng2 13892 ringass 13893 ringideu 13894 isringid 13902 ringidss 13906 ringpropd 13915 ring1 13936 opprmulg 13948 oppr0g 13958 oppr1g 13959 opprnegg 13960 mulgass3 13962 reldvdsrsrg 13969 dvdsrvald 13970 dvdsrd 13971 opprunitd 13987 dvrvald 14011 rdivmuldivd 14021 rhmmul 14041 isrhm2d 14042 rhmopp 14053 rhmunitinv 14055 islring 14069 lringuplu 14073 subrngmcl 14086 subrg1 14108 subrgmcl 14110 subrgdvds 14112 subrguss 14113 subrginv 14114 subrgdv 14115 subrgunit 14116 subrgugrp 14117 issubrg3 14124 rhmpropd 14131 rrgval 14139 aprval 14159 aprap 14163 islmod 14168 islmodd 14170 scaffvalg 14183 lmodpropd 14226 lsssetm 14233 islssmd 14236 islidlm 14356 lidlacl 14361 rnglidlmmgm 14373 rnglidlmsgrp 14374 rnglidlrng 14375 rspsn 14411 psrval 14543 psradd 14556 mpladd 14581 blfvalps 14972 lgseisenlem3 15664 lgseisenlem4 15665 |
| Copyright terms: Public domain | W3C validator |