| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqd | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) |
| Ref | Expression |
|---|---|
| oveq1d.1 |
|
| Ref | Expression |
|---|---|
| oveqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 |
. 2
| |
| 2 | oveq 5931 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: oveq123d 5946 oveqdr 5953 csbov12g 5965 ovmpodxf 6052 oprssov 6069 ofeqd 6141 ofeq 6142 fnmpoovd 6282 seqeq2 10560 prdsex 12971 prdsval 12975 pwsplusgval 12997 pwsmulrval 12998 imasex 13007 imasival 13008 plusffvalg 13064 mgm1 13072 grpidvalg 13075 grpidd 13085 gsumress 13097 sgrp1 13113 issgrpd 13114 ismndd 13139 issubmnd 13144 mnd1 13157 ismhm 13163 mhmex 13164 issubm 13174 resmhm 13189 resmhm2 13190 resmhm2b 13191 isgrp 13208 isgrpd2e 13222 grpidd2 13243 grpinvfvalg 13244 grp1 13308 imasgrp2 13316 imasgrp 13317 subg0 13386 subginv 13387 subgcl 13390 issubgrpd2 13396 isnsg 13408 nmznsg 13419 isghm 13449 resghm 13466 iscmn 13499 iscmnd 13504 imasabl 13542 rngass 13571 rngcl 13576 rngpropd 13587 dfur2g 13594 issrg 13597 srgcl 13602 srgass 13603 srgideu 13604 issrgid 13613 srgpcomp 13622 srgpcompp 13623 isring 13632 ringcl 13645 crngcom 13646 iscrng2 13647 ringass 13648 ringideu 13649 isringid 13657 ringidss 13661 ringpropd 13670 ring1 13691 opprmulg 13703 oppr0g 13713 oppr1g 13714 opprnegg 13715 mulgass3 13717 reldvdsrsrg 13724 dvdsrvald 13725 dvdsrd 13726 opprunitd 13742 dvrvald 13766 rdivmuldivd 13776 rhmmul 13796 isrhm2d 13797 rhmopp 13808 rhmunitinv 13810 islring 13824 lringuplu 13828 subrngmcl 13841 subrg1 13863 subrgmcl 13865 subrgdvds 13867 subrguss 13868 subrginv 13869 subrgdv 13870 subrgunit 13871 subrgugrp 13872 issubrg3 13879 rhmpropd 13886 rrgval 13894 aprval 13914 aprap 13918 islmod 13923 islmodd 13925 scaffvalg 13938 lmodpropd 13981 lsssetm 13988 islssmd 13991 islidlm 14111 lidlacl 14116 rnglidlmmgm 14128 rnglidlmsgrp 14129 rnglidlrng 14130 rspsn 14166 psrval 14296 psradd 14307 blfvalps 14705 lgseisenlem3 15397 lgseisenlem4 15398 |
| Copyright terms: Public domain | W3C validator |