Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveqd | Unicode version |
Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) |
Ref | Expression |
---|---|
oveq1d.1 |
Ref | Expression |
---|---|
oveqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 | |
2 | oveq 5859 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: oveq123d 5874 oveqdr 5881 csbov12g 5892 ovmpodxf 5978 oprssov 5994 ofeq 6063 fnmpoovd 6194 seqeq2 10405 plusffvalg 12616 mgm1 12624 grpidvalg 12627 grpidd 12637 sgrp1 12651 ismndd 12673 mnd1 12679 ismhm 12685 issubm 12695 isgrp 12714 isgrpd2e 12726 grpidd2 12744 grpinvfvalg 12745 blfvalps 13179 |
Copyright terms: Public domain | W3C validator |