![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveqd | Unicode version |
Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) |
Ref | Expression |
---|---|
oveq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
oveqd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | oveq 5925 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 |
This theorem is referenced by: oveq123d 5940 oveqdr 5947 csbov12g 5958 ovmpodxf 6045 oprssov 6062 ofeqd 6134 ofeq 6135 fnmpoovd 6270 seqeq2 10525 prdsex 12883 imasex 12891 imasival 12892 plusffvalg 12948 mgm1 12956 grpidvalg 12959 grpidd 12969 gsumress 12981 sgrp1 12997 issgrpd 12998 ismndd 13021 issubmnd 13026 mnd1 13030 ismhm 13036 mhmex 13037 issubm 13047 resmhm 13062 resmhm2 13063 resmhm2b 13064 isgrp 13081 isgrpd2e 13095 grpidd2 13116 grpinvfvalg 13117 grp1 13181 imasgrp2 13183 imasgrp 13184 subg0 13253 subginv 13254 subgcl 13257 issubgrpd2 13263 isnsg 13275 nmznsg 13286 isghm 13316 resghm 13333 iscmn 13366 iscmnd 13371 imasabl 13409 rngass 13438 rngcl 13443 rngpropd 13454 dfur2g 13461 issrg 13464 srgcl 13469 srgass 13470 srgideu 13471 issrgid 13480 srgpcomp 13489 srgpcompp 13490 isring 13499 ringcl 13512 crngcom 13513 iscrng2 13514 ringass 13515 ringideu 13516 isringid 13524 ringidss 13528 ringpropd 13537 ring1 13558 opprmulg 13570 oppr0g 13580 oppr1g 13581 opprnegg 13582 mulgass3 13584 reldvdsrsrg 13591 dvdsrvald 13592 dvdsrd 13593 opprunitd 13609 dvrvald 13633 rdivmuldivd 13643 rhmmul 13663 isrhm2d 13664 rhmopp 13675 rhmunitinv 13677 islring 13691 lringuplu 13695 subrngmcl 13708 subrg1 13730 subrgmcl 13732 subrgdvds 13734 subrguss 13735 subrginv 13736 subrgdv 13737 subrgunit 13738 subrgugrp 13739 issubrg3 13746 rhmpropd 13753 rrgval 13761 aprval 13781 aprap 13785 islmod 13790 islmodd 13792 scaffvalg 13805 lmodpropd 13848 lsssetm 13855 islssmd 13858 islidlm 13978 lidlacl 13983 rnglidlmmgm 13995 rnglidlmsgrp 13996 rnglidlrng 13997 rspsn 14033 psrval 14163 psradd 14174 blfvalps 14564 lgseisenlem3 15229 lgseisenlem4 15230 |
Copyright terms: Public domain | W3C validator |