| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > oveqd | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) | 
| Ref | Expression | 
|---|---|
| oveq1d.1 | 
 | 
| Ref | Expression | 
|---|---|
| oveqd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq1d.1 | 
. 2
 | |
| 2 | oveq 5928 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: oveq123d 5943 oveqdr 5950 csbov12g 5961 ovmpodxf 6048 oprssov 6065 ofeqd 6137 ofeq 6138 fnmpoovd 6273 seqeq2 10543 prdsex 12940 imasex 12948 imasival 12949 plusffvalg 13005 mgm1 13013 grpidvalg 13016 grpidd 13026 gsumress 13038 sgrp1 13054 issgrpd 13055 ismndd 13078 issubmnd 13083 mnd1 13087 ismhm 13093 mhmex 13094 issubm 13104 resmhm 13119 resmhm2 13120 resmhm2b 13121 isgrp 13138 isgrpd2e 13152 grpidd2 13173 grpinvfvalg 13174 grp1 13238 imasgrp2 13240 imasgrp 13241 subg0 13310 subginv 13311 subgcl 13314 issubgrpd2 13320 isnsg 13332 nmznsg 13343 isghm 13373 resghm 13390 iscmn 13423 iscmnd 13428 imasabl 13466 rngass 13495 rngcl 13500 rngpropd 13511 dfur2g 13518 issrg 13521 srgcl 13526 srgass 13527 srgideu 13528 issrgid 13537 srgpcomp 13546 srgpcompp 13547 isring 13556 ringcl 13569 crngcom 13570 iscrng2 13571 ringass 13572 ringideu 13573 isringid 13581 ringidss 13585 ringpropd 13594 ring1 13615 opprmulg 13627 oppr0g 13637 oppr1g 13638 opprnegg 13639 mulgass3 13641 reldvdsrsrg 13648 dvdsrvald 13649 dvdsrd 13650 opprunitd 13666 dvrvald 13690 rdivmuldivd 13700 rhmmul 13720 isrhm2d 13721 rhmopp 13732 rhmunitinv 13734 islring 13748 lringuplu 13752 subrngmcl 13765 subrg1 13787 subrgmcl 13789 subrgdvds 13791 subrguss 13792 subrginv 13793 subrgdv 13794 subrgunit 13795 subrgugrp 13796 issubrg3 13803 rhmpropd 13810 rrgval 13818 aprval 13838 aprap 13842 islmod 13847 islmodd 13849 scaffvalg 13862 lmodpropd 13905 lsssetm 13912 islssmd 13915 islidlm 14035 lidlacl 14040 rnglidlmmgm 14052 rnglidlmsgrp 14053 rnglidlrng 14054 rspsn 14090 psrval 14220 psradd 14231 blfvalps 14621 lgseisenlem3 15313 lgseisenlem4 15314 | 
| Copyright terms: Public domain | W3C validator |