| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dv | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| mpteq2dv.1 |
|
| Ref | Expression |
|---|---|
| mpteq2dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2dv.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | 2 | mpteq2dva 4150 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-ral 2491 df-opab 4122 df-mpt 4123 |
| This theorem is referenced by: ofeqd 6183 ofeq 6184 rdgeq1 6480 rdgeq2 6481 omv 6564 oeiv 6565 0tonninf 10622 1tonninf 10623 iseqf1olemjpcl 10690 iseqf1olemqpcl 10691 iseqf1olemfvp 10692 seq3f1olemqsum 10695 seq3f1olemp 10697 summodc 11809 zsumdc 11810 fsum3 11813 prodeq2w 11982 prodmodc 12004 zproddc 12005 fprodseq 12009 nninfctlemfo 12476 1arithlem1 12801 sloteq 12952 prdsplusgval 13230 prdsmulrval 13232 qusex 13272 grplactfval 13548 cnprcl2k 14793 fsumcncntop 15154 expcn 15156 expcncf 15196 dvexp 15298 dvexp2 15299 dvmptfsum 15312 elply2 15322 elplyr 15327 elplyd 15328 plycolemc 15345 dvply2g 15353 lgsval 15596 incistruhgr 15801 peano4nninf 16145 peano3nninf 16146 nninfalllem1 16147 nninfsellemdc 16149 nninfsellemeq 16153 nninfsellemqall 16154 nninfsellemeqinf 16155 nninfomni 16158 nnnninfex 16161 |
| Copyright terms: Public domain | W3C validator |