| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dv | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| mpteq2dv.1 |
|
| Ref | Expression |
|---|---|
| mpteq2dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2dv.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | 2 | mpteq2dva 4135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-opab 4107 df-mpt 4108 |
| This theorem is referenced by: ofeqd 6162 ofeq 6163 rdgeq1 6459 rdgeq2 6460 omv 6543 oeiv 6544 0tonninf 10587 1tonninf 10588 iseqf1olemjpcl 10655 iseqf1olemqpcl 10656 iseqf1olemfvp 10657 seq3f1olemqsum 10660 seq3f1olemp 10662 summodc 11727 zsumdc 11728 fsum3 11731 prodeq2w 11900 prodmodc 11922 zproddc 11923 fprodseq 11927 nninfctlemfo 12394 1arithlem1 12719 sloteq 12870 prdsplusgval 13148 prdsmulrval 13150 qusex 13190 grplactfval 13466 cnprcl2k 14711 fsumcncntop 15072 expcn 15074 expcncf 15114 dvexp 15216 dvexp2 15217 dvmptfsum 15230 elply2 15240 elplyr 15245 elplyd 15246 plycolemc 15263 dvply2g 15271 lgsval 15514 peano4nninf 15980 peano3nninf 15981 nninfalllem1 15982 nninfsellemdc 15984 nninfsellemeq 15988 nninfsellemqall 15989 nninfsellemeqinf 15990 nninfomni 15993 nnnninfex 15996 |
| Copyright terms: Public domain | W3C validator |