| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpteq2dv | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) | 
| Ref | Expression | 
|---|---|
| mpteq2dv.1 | 
 | 
| Ref | Expression | 
|---|---|
| mpteq2dv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpteq2dv.1 | 
. . 3
 | |
| 2 | 1 | adantr 276 | 
. 2
 | 
| 3 | 2 | mpteq2dva 4123 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4095 df-mpt 4096 | 
| This theorem is referenced by: ofeqd 6137 ofeq 6138 rdgeq1 6429 rdgeq2 6430 omv 6513 oeiv 6514 0tonninf 10532 1tonninf 10533 iseqf1olemjpcl 10600 iseqf1olemqpcl 10601 iseqf1olemfvp 10602 seq3f1olemqsum 10605 seq3f1olemp 10607 summodc 11548 zsumdc 11549 fsum3 11552 prodeq2w 11721 prodmodc 11743 zproddc 11744 fprodseq 11748 nninfctlemfo 12207 1arithlem1 12532 sloteq 12683 qusex 12968 grplactfval 13233 cnprcl2k 14442 fsumcncntop 14803 expcn 14805 expcncf 14845 dvexp 14947 dvexp2 14948 dvmptfsum 14961 elply2 14971 elplyr 14976 elplyd 14977 plycolemc 14994 dvply2g 15002 lgsval 15245 peano4nninf 15650 peano3nninf 15651 nninfalllem1 15652 nninfsellemdc 15654 nninfsellemeq 15658 nninfsellemqall 15659 nninfsellemeqinf 15660 nninfomni 15663 | 
| Copyright terms: Public domain | W3C validator |