ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2dv Unicode version

Theorem mpteq2dv 4120
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
mpteq2dv.1  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
mpteq2dv  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem mpteq2dv
StepHypRef Expression
1 mpteq2dv.1 . . 3  |-  ( ph  ->  B  =  C )
21adantr 276 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
32mpteq2dva 4119 1  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    |-> cmpt 4090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ral 2477  df-opab 4091  df-mpt 4092
This theorem is referenced by:  ofeqd  6132  ofeq  6133  rdgeq1  6424  rdgeq2  6425  omv  6508  oeiv  6509  0tonninf  10511  1tonninf  10512  iseqf1olemjpcl  10579  iseqf1olemqpcl  10580  iseqf1olemfvp  10581  seq3f1olemqsum  10584  seq3f1olemp  10586  summodc  11526  zsumdc  11527  fsum3  11530  prodeq2w  11699  prodmodc  11721  zproddc  11722  fprodseq  11726  nninfctlemfo  12177  1arithlem1  12501  sloteq  12623  qusex  12908  grplactfval  13173  cnprcl2k  14374  fsumcncntop  14724  expcncf  14763  dvexp  14860  dvexp2  14861  elply2  14881  elplyr  14886  elplyd  14887  lgsval  15120  peano4nninf  15496  peano3nninf  15497  nninfalllem1  15498  nninfsellemdc  15500  nninfsellemeq  15504  nninfsellemqall  15505  nninfsellemeqinf  15506  nninfomni  15509
  Copyright terms: Public domain W3C validator