| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dv | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| mpteq2dv.1 |
|
| Ref | Expression |
|---|---|
| mpteq2dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2dv.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | 2 | mpteq2dva 4174 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-opab 4146 df-mpt 4147 |
| This theorem is referenced by: ofeqd 6220 ofeq 6221 rdgeq1 6517 rdgeq2 6518 omv 6601 oeiv 6602 0tonninf 10662 1tonninf 10663 iseqf1olemjpcl 10730 iseqf1olemqpcl 10731 iseqf1olemfvp 10732 seq3f1olemqsum 10735 seq3f1olemp 10737 summodc 11894 zsumdc 11895 fsum3 11898 prodeq2w 12067 prodmodc 12089 zproddc 12090 fprodseq 12094 nninfctlemfo 12561 1arithlem1 12886 sloteq 13037 prdsplusgval 13316 prdsmulrval 13318 qusex 13358 grplactfval 13634 cnprcl2k 14880 fsumcncntop 15241 expcn 15243 expcncf 15283 dvexp 15385 dvexp2 15386 dvmptfsum 15399 elply2 15409 elplyr 15414 elplyd 15415 plycolemc 15432 dvply2g 15440 lgsval 15683 incistruhgr 15890 peano4nninf 16372 peano3nninf 16373 nninfalllem1 16374 nninfsellemdc 16376 nninfsellemeq 16380 nninfsellemqall 16381 nninfsellemeqinf 16382 nninfomni 16385 nnnninfex 16388 |
| Copyright terms: Public domain | W3C validator |