ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2dv Unicode version

Theorem mpteq2dv 4124
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
mpteq2dv.1  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
mpteq2dv  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem mpteq2dv
StepHypRef Expression
1 mpteq2dv.1 . . 3  |-  ( ph  ->  B  =  C )
21adantr 276 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
32mpteq2dva 4123 1  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    |-> cmpt 4094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-opab 4095  df-mpt 4096
This theorem is referenced by:  ofeqd  6137  ofeq  6138  rdgeq1  6429  rdgeq2  6430  omv  6513  oeiv  6514  0tonninf  10532  1tonninf  10533  iseqf1olemjpcl  10600  iseqf1olemqpcl  10601  iseqf1olemfvp  10602  seq3f1olemqsum  10605  seq3f1olemp  10607  summodc  11548  zsumdc  11549  fsum3  11552  prodeq2w  11721  prodmodc  11743  zproddc  11744  fprodseq  11748  nninfctlemfo  12207  1arithlem1  12532  sloteq  12683  qusex  12968  grplactfval  13233  cnprcl2k  14442  fsumcncntop  14803  expcn  14805  expcncf  14845  dvexp  14947  dvexp2  14948  dvmptfsum  14961  elply2  14971  elplyr  14976  elplyd  14977  plycolemc  14994  dvply2g  15002  lgsval  15245  peano4nninf  15650  peano3nninf  15651  nninfalllem1  15652  nninfsellemdc  15654  nninfsellemeq  15658  nninfsellemqall  15659  nninfsellemeqinf  15660  nninfomni  15663
  Copyright terms: Public domain W3C validator