| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dv | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| mpteq2dv.1 |
|
| Ref | Expression |
|---|---|
| mpteq2dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2dv.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | 2 | mpteq2dva 4124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: ofeqd 6141 ofeq 6142 rdgeq1 6438 rdgeq2 6439 omv 6522 oeiv 6523 0tonninf 10549 1tonninf 10550 iseqf1olemjpcl 10617 iseqf1olemqpcl 10618 iseqf1olemfvp 10619 seq3f1olemqsum 10622 seq3f1olemp 10624 summodc 11565 zsumdc 11566 fsum3 11569 prodeq2w 11738 prodmodc 11760 zproddc 11761 fprodseq 11765 nninfctlemfo 12232 1arithlem1 12557 sloteq 12708 prdsplusgval 12985 prdsmulrval 12987 qusex 13027 grplactfval 13303 cnprcl2k 14526 fsumcncntop 14887 expcn 14889 expcncf 14929 dvexp 15031 dvexp2 15032 dvmptfsum 15045 elply2 15055 elplyr 15060 elplyd 15061 plycolemc 15078 dvply2g 15086 lgsval 15329 peano4nninf 15737 peano3nninf 15738 nninfalllem1 15739 nninfsellemdc 15741 nninfsellemeq 15745 nninfsellemqall 15746 nninfsellemeqinf 15747 nninfomni 15750 |
| Copyright terms: Public domain | W3C validator |