![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpteq2dv | Unicode version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
mpteq2dv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpteq2dv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq2dv.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 276 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | mpteq2dva 4120 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-ral 2477 df-opab 4092 df-mpt 4093 |
This theorem is referenced by: ofeqd 6134 ofeq 6135 rdgeq1 6426 rdgeq2 6427 omv 6510 oeiv 6511 0tonninf 10514 1tonninf 10515 iseqf1olemjpcl 10582 iseqf1olemqpcl 10583 iseqf1olemfvp 10584 seq3f1olemqsum 10587 seq3f1olemp 10589 summodc 11529 zsumdc 11530 fsum3 11533 prodeq2w 11702 prodmodc 11724 zproddc 11725 fprodseq 11729 nninfctlemfo 12180 1arithlem1 12504 sloteq 12626 qusex 12911 grplactfval 13176 cnprcl2k 14385 fsumcncntop 14746 expcn 14748 expcncf 14788 dvexp 14890 dvexp2 14891 dvmptfsum 14904 elply2 14914 elplyr 14919 elplyd 14920 plycolemc 14936 lgsval 15161 peano4nninf 15566 peano3nninf 15567 nninfalllem1 15568 nninfsellemdc 15570 nninfsellemeq 15574 nninfsellemqall 15575 nninfsellemeqinf 15576 nninfomni 15579 |
Copyright terms: Public domain | W3C validator |