Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteq2dv | Unicode version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
mpteq2dv.1 |
Ref | Expression |
---|---|
mpteq2dv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq2dv.1 | . . 3 | |
2 | 1 | adantr 274 | . 2 |
3 | 2 | mpteq2dva 4077 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 cmpt 4048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-opab 4049 df-mpt 4050 |
This theorem is referenced by: ofeq 6060 rdgeq1 6347 rdgeq2 6348 omv 6431 oeiv 6432 0tonninf 10382 1tonninf 10383 iseqf1olemjpcl 10438 iseqf1olemqpcl 10439 iseqf1olemfvp 10440 seq3f1olemqsum 10443 seq3f1olemp 10445 summodc 11333 zsumdc 11334 fsum3 11337 prodeq2w 11506 prodmodc 11528 zproddc 11529 fprodseq 11533 1arithlem1 12302 sloteq 12408 cnprcl2k 12959 fsumcncntop 13309 expcncf 13345 dvexp 13428 dvexp2 13429 lgsval 13658 peano4nninf 13999 peano3nninf 14000 nninfalllem1 14001 nninfsellemdc 14003 nninfsellemeq 14007 nninfsellemqall 14008 nninfsellemeqinf 14009 nninfomni 14012 |
Copyright terms: Public domain | W3C validator |