ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2dv Unicode version

Theorem mpteq2dv 4078
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
mpteq2dv.1  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
mpteq2dv  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem mpteq2dv
StepHypRef Expression
1 mpteq2dv.1 . . 3  |-  ( ph  ->  B  =  C )
21adantr 274 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
32mpteq2dva 4077 1  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141    |-> cmpt 4048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-opab 4049  df-mpt 4050
This theorem is referenced by:  ofeq  6060  rdgeq1  6347  rdgeq2  6348  omv  6431  oeiv  6432  0tonninf  10382  1tonninf  10383  iseqf1olemjpcl  10438  iseqf1olemqpcl  10439  iseqf1olemfvp  10440  seq3f1olemqsum  10443  seq3f1olemp  10445  summodc  11333  zsumdc  11334  fsum3  11337  prodeq2w  11506  prodmodc  11528  zproddc  11529  fprodseq  11533  1arithlem1  12302  sloteq  12408  cnprcl2k  12959  fsumcncntop  13309  expcncf  13345  dvexp  13428  dvexp2  13429  lgsval  13658  peano4nninf  13999  peano3nninf  14000  nninfalllem1  14001  nninfsellemdc  14003  nninfsellemeq  14007  nninfsellemqall  14008  nninfsellemeqinf  14009  nninfomni  14012
  Copyright terms: Public domain W3C validator