| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dv | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| mpteq2dv.1 |
|
| Ref | Expression |
|---|---|
| mpteq2dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2dv.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | 2 | mpteq2dva 4134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-opab 4106 df-mpt 4107 |
| This theorem is referenced by: ofeqd 6160 ofeq 6161 rdgeq1 6457 rdgeq2 6458 omv 6541 oeiv 6542 0tonninf 10585 1tonninf 10586 iseqf1olemjpcl 10653 iseqf1olemqpcl 10654 iseqf1olemfvp 10655 seq3f1olemqsum 10658 seq3f1olemp 10660 summodc 11694 zsumdc 11695 fsum3 11698 prodeq2w 11867 prodmodc 11889 zproddc 11890 fprodseq 11894 nninfctlemfo 12361 1arithlem1 12686 sloteq 12837 prdsplusgval 13115 prdsmulrval 13117 qusex 13157 grplactfval 13433 cnprcl2k 14678 fsumcncntop 15039 expcn 15041 expcncf 15081 dvexp 15183 dvexp2 15184 dvmptfsum 15197 elply2 15207 elplyr 15212 elplyd 15213 plycolemc 15230 dvply2g 15238 lgsval 15481 peano4nninf 15943 peano3nninf 15944 nninfalllem1 15945 nninfsellemdc 15947 nninfsellemeq 15951 nninfsellemqall 15952 nninfsellemeqinf 15953 nninfomni 15956 nnnninfex 15959 |
| Copyright terms: Public domain | W3C validator |