ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri2or2 Unicode version

Theorem nntri2or2 6644
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
nntri2or2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  \/  B  C_  A ) )

Proof of Theorem nntri2or2
StepHypRef Expression
1 nnon 4702 . . . . . 6  |-  ( B  e.  om  ->  B  e.  On )
21adantl 277 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  B  e.  On )
3 onelss 4478 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
42, 3syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
54imp 124 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  A  C_  B
)
65orcd 738 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  ( A  C_  B  \/  B  C_  A ) )
7 eqimss 3278 . . . 4  |-  ( A  =  B  ->  A  C_  B )
87adantl 277 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  =  B
)  ->  A  C_  B
)
98orcd 738 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  =  B
)  ->  ( A  C_  B  \/  B  C_  A ) )
10 nnon 4702 . . . . . 6  |-  ( A  e.  om  ->  A  e.  On )
1110adantr 276 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  A  e.  On )
12 onelss 4478 . . . . 5  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )
1311, 12syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  e.  A  ->  B  C_  A )
)
1413imp 124 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  e.  A
)  ->  B  C_  A
)
1514olcd 739 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  e.  A
)  ->  ( A  C_  B  \/  B  C_  A ) )
16 nntri3or 6639 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
176, 9, 15, 16mpjao3dan 1341 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  \/  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200    C_ wss 3197   Oncon0 4454   omcom 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683
This theorem is referenced by:  fientri3  7077
  Copyright terms: Public domain W3C validator