ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri2or2 Unicode version

Theorem nntri2or2 6513
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
nntri2or2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  \/  B  C_  A ) )

Proof of Theorem nntri2or2
StepHypRef Expression
1 nnon 4621 . . . . . 6  |-  ( B  e.  om  ->  B  e.  On )
21adantl 277 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  B  e.  On )
3 onelss 4399 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
42, 3syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
54imp 124 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  A  C_  B
)
65orcd 734 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  ( A  C_  B  \/  B  C_  A ) )
7 eqimss 3221 . . . 4  |-  ( A  =  B  ->  A  C_  B )
87adantl 277 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  =  B
)  ->  A  C_  B
)
98orcd 734 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  =  B
)  ->  ( A  C_  B  \/  B  C_  A ) )
10 nnon 4621 . . . . . 6  |-  ( A  e.  om  ->  A  e.  On )
1110adantr 276 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  A  e.  On )
12 onelss 4399 . . . . 5  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )
1311, 12syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  e.  A  ->  B  C_  A )
)
1413imp 124 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  e.  A
)  ->  B  C_  A
)
1514olcd 735 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  e.  A
)  ->  ( A  C_  B  \/  B  C_  A ) )
16 nntri3or 6508 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
176, 9, 15, 16mpjao3dan 1317 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  \/  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1363    e. wcel 2158    C_ wss 3141   Oncon0 4375   omcom 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-uni 3822  df-int 3857  df-tr 4114  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602
This theorem is referenced by:  fientri3  6928
  Copyright terms: Public domain W3C validator