ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri2or2 Unicode version

Theorem nntri2or2 6397
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
nntri2or2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  \/  B  C_  A ) )

Proof of Theorem nntri2or2
StepHypRef Expression
1 nnon 4526 . . . . . 6  |-  ( B  e.  om  ->  B  e.  On )
21adantl 275 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  B  e.  On )
3 onelss 4312 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
42, 3syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
54imp 123 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  A  C_  B
)
65orcd 722 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  ( A  C_  B  \/  B  C_  A ) )
7 eqimss 3151 . . . 4  |-  ( A  =  B  ->  A  C_  B )
87adantl 275 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  =  B
)  ->  A  C_  B
)
98orcd 722 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  =  B
)  ->  ( A  C_  B  \/  B  C_  A ) )
10 nnon 4526 . . . . . 6  |-  ( A  e.  om  ->  A  e.  On )
1110adantr 274 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  A  e.  On )
12 onelss 4312 . . . . 5  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )
1311, 12syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  e.  A  ->  B  C_  A )
)
1413imp 123 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  e.  A
)  ->  B  C_  A
)
1514olcd 723 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  e.  A
)  ->  ( A  C_  B  \/  B  C_  A ) )
16 nntri3or 6392 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
176, 9, 15, 16mpjao3dan 1285 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  \/  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480    C_ wss 3071   Oncon0 4288   omcom 4507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-nul 4057  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-iinf 4505
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-uni 3740  df-int 3775  df-tr 4030  df-iord 4291  df-on 4293  df-suc 4296  df-iom 4508
This theorem is referenced by:  fientri3  6806
  Copyright terms: Public domain W3C validator