ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri2or2 Unicode version

Theorem nntri2or2 6475
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
nntri2or2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  \/  B  C_  A ) )

Proof of Theorem nntri2or2
StepHypRef Expression
1 nnon 4592 . . . . . 6  |-  ( B  e.  om  ->  B  e.  On )
21adantl 275 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  B  e.  On )
3 onelss 4370 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
42, 3syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
54imp 123 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  A  C_  B
)
65orcd 728 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  ( A  C_  B  \/  B  C_  A ) )
7 eqimss 3201 . . . 4  |-  ( A  =  B  ->  A  C_  B )
87adantl 275 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  =  B
)  ->  A  C_  B
)
98orcd 728 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  =  B
)  ->  ( A  C_  B  \/  B  C_  A ) )
10 nnon 4592 . . . . . 6  |-  ( A  e.  om  ->  A  e.  On )
1110adantr 274 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  A  e.  On )
12 onelss 4370 . . . . 5  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )
1311, 12syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  e.  A  ->  B  C_  A )
)
1413imp 123 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  e.  A
)  ->  B  C_  A
)
1514olcd 729 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  e.  A
)  ->  ( A  C_  B  \/  B  C_  A ) )
16 nntri3or 6470 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
176, 9, 15, 16mpjao3dan 1302 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  \/  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141    C_ wss 3121   Oncon0 4346   omcom 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-uni 3795  df-int 3830  df-tr 4086  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573
This theorem is referenced by:  fientri3  6890
  Copyright terms: Public domain W3C validator