ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phpelm Unicode version

Theorem phpelm 6927
Description: Pigeonhole Principle. A natural number is not equinumerous to an element of itself. (Contributed by Jim Kingdon, 6-Sep-2021.)
Assertion
Ref Expression
phpelm  |-  ( ( A  e.  om  /\  B  e.  A )  ->  -.  A  ~~  B
)

Proof of Theorem phpelm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  e.  om )
2 nnon 4646 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
3 onelss 4422 . . . 4  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )
42, 3syl 14 . . 3  |-  ( A  e.  om  ->  ( B  e.  A  ->  B 
C_  A ) )
54imp 124 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  B  C_  A )
6 simpr 110 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  B  e.  A )
7 elirr 4577 . . . . 5  |-  -.  B  e.  B
87a1i 9 . . . 4  |-  ( ( A  e.  om  /\  B  e.  A )  ->  -.  B  e.  B
)
96, 8eldifd 3167 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  B  e.  ( A 
\  B ) )
10 eleq1 2259 . . . 4  |-  ( x  =  B  ->  (
x  e.  ( A 
\  B )  <->  B  e.  ( A  \  B ) ) )
1110spcegv 2852 . . 3  |-  ( B  e.  A  ->  ( B  e.  ( A  \  B )  ->  E. x  x  e.  ( A  \  B ) ) )
126, 9, 11sylc 62 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  E. x  x  e.  ( A  \  B
) )
13 phpm 6926 . 2  |-  ( ( A  e.  om  /\  B  C_  A  /\  E. x  x  e.  ( A  \  B ) )  ->  -.  A  ~~  B )
141, 5, 12, 13syl3anc 1249 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  -.  A  ~~  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   E.wex 1506    e. wcel 2167    \ cdif 3154    C_ wss 3157   class class class wbr 4033   Oncon0 4398   omcom 4626    ~~ cen 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-dom 6801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator