ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phpelm Unicode version

Theorem phpelm 6963
Description: Pigeonhole Principle. A natural number is not equinumerous to an element of itself. (Contributed by Jim Kingdon, 6-Sep-2021.)
Assertion
Ref Expression
phpelm  |-  ( ( A  e.  om  /\  B  e.  A )  ->  -.  A  ~~  B
)

Proof of Theorem phpelm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  e.  om )
2 nnon 4658 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
3 onelss 4434 . . . 4  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )
42, 3syl 14 . . 3  |-  ( A  e.  om  ->  ( B  e.  A  ->  B 
C_  A ) )
54imp 124 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  B  C_  A )
6 simpr 110 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  B  e.  A )
7 elirr 4589 . . . . 5  |-  -.  B  e.  B
87a1i 9 . . . 4  |-  ( ( A  e.  om  /\  B  e.  A )  ->  -.  B  e.  B
)
96, 8eldifd 3176 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  B  e.  ( A 
\  B ) )
10 eleq1 2268 . . . 4  |-  ( x  =  B  ->  (
x  e.  ( A 
\  B )  <->  B  e.  ( A  \  B ) ) )
1110spcegv 2861 . . 3  |-  ( B  e.  A  ->  ( B  e.  ( A  \  B )  ->  E. x  x  e.  ( A  \  B ) ) )
126, 9, 11sylc 62 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  E. x  x  e.  ( A  \  B
) )
13 phpm 6962 . 2  |-  ( ( A  e.  om  /\  B  C_  A  /\  E. x  x  e.  ( A  \  B ) )  ->  -.  A  ~~  B )
141, 5, 12, 13syl3anc 1250 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  -.  A  ~~  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   E.wex 1515    e. wcel 2176    \ cdif 3163    C_ wss 3166   class class class wbr 4044   Oncon0 4410   omcom 4638    ~~ cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6620  df-en 6828  df-dom 6829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator