ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelss GIF version

Theorem onelss 4304
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
onelss (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))

Proof of Theorem onelss
StepHypRef Expression
1 eloni 4292 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordelss 4296 . . 3 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
32ex 114 . 2 (Ord 𝐴 → (𝐵𝐴𝐵𝐴))
41, 3syl 14 1 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480  wss 3066  Ord word 4279  Oncon0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-in 3072  df-ss 3079  df-uni 3732  df-tr 4022  df-iord 4283  df-on 4285
This theorem is referenced by:  onelssi  4346  ssorduni  4398  onsucelsucr  4419  tfisi  4496  tfrlem9  6209  nntri2or2  6387  phpelm  6753  ennnfonelemk  11902
  Copyright terms: Public domain W3C validator