ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelss GIF version

Theorem onelss 4455
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
onelss (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))

Proof of Theorem onelss
StepHypRef Expression
1 eloni 4443 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordelss 4447 . . 3 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
32ex 115 . 2 (Ord 𝐴 → (𝐵𝐴𝐵𝐴))
41, 3syl 14 1 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2180  wss 3177  Ord word 4430  Oncon0 4431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-in 3183  df-ss 3190  df-uni 3868  df-tr 4162  df-iord 4434  df-on 4436
This theorem is referenced by:  onelssi  4497  ssorduni  4556  onsucelsucr  4577  tfisi  4656  tfrlem9  6435  nntri2or2  6614  phpelm  6996  exmidontri2or  7396  nninfctlemfo  12527  ennnfonelemk  12937
  Copyright terms: Public domain W3C validator