ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelss GIF version

Theorem onelss 4399
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
onelss (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))

Proof of Theorem onelss
StepHypRef Expression
1 eloni 4387 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordelss 4391 . . 3 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
32ex 115 . 2 (Ord 𝐴 → (𝐵𝐴𝐵𝐴))
41, 3syl 14 1 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2158  wss 3141  Ord word 4374  Oncon0 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-in 3147  df-ss 3154  df-uni 3822  df-tr 4114  df-iord 4378  df-on 4380
This theorem is referenced by:  onelssi  4441  ssorduni  4498  onsucelsucr  4519  tfisi  4598  tfrlem9  6334  nntri2or2  6513  phpelm  6880  exmidontri2or  7256  ennnfonelemk  12415
  Copyright terms: Public domain W3C validator