Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onun2 | GIF version |
Description: The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.) |
Ref | Expression |
---|---|
onun2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 3736 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} ⊆ On) | |
2 | prexg 4194 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} ∈ V) | |
3 | ssonuni 4470 | . . . 4 ⊢ ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} ⊆ On → ∪ {𝐴, 𝐵} ∈ On)) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, 𝐵} ⊆ On → ∪ {𝐴, 𝐵} ∈ On)) |
5 | uniprg 3809 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
6 | 5 | eleq1d 2239 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∪ {𝐴, 𝐵} ∈ On ↔ (𝐴 ∪ 𝐵) ∈ On)) |
7 | 4, 6 | sylibd 148 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, 𝐵} ⊆ On → (𝐴 ∪ 𝐵) ∈ On)) |
8 | 1, 7 | mpd 13 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 ⊆ wss 3121 {cpr 3582 ∪ cuni 3794 Oncon0 4346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-uni 3795 df-tr 4086 df-iord 4349 df-on 4351 |
This theorem is referenced by: onun2i 4473 rdgon 6362 |
Copyright terms: Public domain | W3C validator |