ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onun2 GIF version

Theorem onun2 4467
Description: The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.)
Assertion
Ref Expression
onun2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)

Proof of Theorem onun2
StepHypRef Expression
1 prssi 3731 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} ⊆ On)
2 prexg 4189 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} ∈ V)
3 ssonuni 4465 . . . 4 ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} ⊆ On → {𝐴, 𝐵} ∈ On))
42, 3syl 14 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, 𝐵} ⊆ On → {𝐴, 𝐵} ∈ On))
5 uniprg 3804 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} = (𝐴𝐵))
65eleq1d 2235 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( {𝐴, 𝐵} ∈ On ↔ (𝐴𝐵) ∈ On))
74, 6sylibd 148 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, 𝐵} ⊆ On → (𝐴𝐵) ∈ On))
81, 7mpd 13 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  Vcvv 2726  cun 3114  wss 3116  {cpr 3577   cuni 3789  Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346
This theorem is referenced by:  onun2i  4468  rdgon  6354
  Copyright terms: Public domain W3C validator