ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onun2 GIF version

Theorem onun2 4543
Description: The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.)
Assertion
Ref Expression
onun2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)

Proof of Theorem onun2
StepHypRef Expression
1 prssi 3794 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} ⊆ On)
2 prexg 4260 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} ∈ V)
3 ssonuni 4541 . . . 4 ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} ⊆ On → {𝐴, 𝐵} ∈ On))
42, 3syl 14 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, 𝐵} ⊆ On → {𝐴, 𝐵} ∈ On))
5 uniprg 3868 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} = (𝐴𝐵))
65eleq1d 2275 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( {𝐴, 𝐵} ∈ On ↔ (𝐴𝐵) ∈ On))
74, 6sylibd 149 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, 𝐵} ⊆ On → (𝐴𝐵) ∈ On))
81, 7mpd 13 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  Vcvv 2773  cun 3166  wss 3168  {cpr 3636   cuni 3853  Oncon0 4415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-sn 3641  df-pr 3642  df-uni 3854  df-tr 4148  df-iord 4418  df-on 4420
This theorem is referenced by:  onun2i  4544  rdgon  6482
  Copyright terms: Public domain W3C validator