Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onun2 | GIF version |
Description: The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.) |
Ref | Expression |
---|---|
onun2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 3731 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} ⊆ On) | |
2 | prexg 4189 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} ∈ V) | |
3 | ssonuni 4465 | . . . 4 ⊢ ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} ⊆ On → ∪ {𝐴, 𝐵} ∈ On)) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, 𝐵} ⊆ On → ∪ {𝐴, 𝐵} ∈ On)) |
5 | uniprg 3804 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
6 | 5 | eleq1d 2235 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∪ {𝐴, 𝐵} ∈ On ↔ (𝐴 ∪ 𝐵) ∈ On)) |
7 | 4, 6 | sylibd 148 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, 𝐵} ⊆ On → (𝐴 ∪ 𝐵) ∈ On)) |
8 | 1, 7 | mpd 13 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 Vcvv 2726 ∪ cun 3114 ⊆ wss 3116 {cpr 3577 ∪ cuni 3789 Oncon0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: onun2i 4468 rdgon 6354 |
Copyright terms: Public domain | W3C validator |