![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onun2 | GIF version |
Description: The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.) |
Ref | Expression |
---|---|
onun2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 3776 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} ⊆ On) | |
2 | prexg 4240 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} ∈ V) | |
3 | ssonuni 4520 | . . . 4 ⊢ ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} ⊆ On → ∪ {𝐴, 𝐵} ∈ On)) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, 𝐵} ⊆ On → ∪ {𝐴, 𝐵} ∈ On)) |
5 | uniprg 3850 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
6 | 5 | eleq1d 2262 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∪ {𝐴, 𝐵} ∈ On ↔ (𝐴 ∪ 𝐵) ∈ On)) |
7 | 4, 6 | sylibd 149 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, 𝐵} ⊆ On → (𝐴 ∪ 𝐵) ∈ On)) |
8 | 1, 7 | mpd 13 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ∪ cun 3151 ⊆ wss 3153 {cpr 3619 ∪ cuni 3835 Oncon0 4394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 |
This theorem is referenced by: onun2i 4523 rdgon 6439 |
Copyright terms: Public domain | W3C validator |