ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  copsex2t Unicode version

Theorem copsex2t 4290
Description: Closed theorem form of copsex2g 4291. (Contributed by NM, 17-Feb-2013.)
Assertion
Ref Expression
copsex2t  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ps ) )  /\  ( A  e.  V  /\  B  e.  W
) )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ps )
)
Distinct variable groups:    x, y, ps    x, A, y    x, B, y
Allowed substitution hints:    ph( x, y)    V( x, y)    W( x, y)

Proof of Theorem copsex2t
StepHypRef Expression
1 elisset 2786 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
2 elisset 2786 . . . 4  |-  ( B  e.  W  ->  E. y 
y  =  B )
31, 2anim12i 338 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  x  =  A  /\  E. y  y  =  B
) )
4 eeanv 1960 . . 3  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  <->  ( E. x  x  =  A  /\  E. y 
y  =  B ) )
53, 4sylibr 134 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  E. x E. y
( x  =  A  /\  y  =  B ) )
6 nfa1 1564 . . . 4  |-  F/ x A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps ) )
7 nfe1 1519 . . . . 5  |-  F/ x E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )
8 nfv 1551 . . . . 5  |-  F/ x ps
97, 8nfbi 1612 . . . 4  |-  F/ x
( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps )
10 nfa2 1602 . . . . 5  |-  F/ y A. x A. y
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ps ) )
11 nfe1 1519 . . . . . . 7  |-  F/ y E. y ( <. A ,  B >.  = 
<. x ,  y >.  /\  ph )
1211nfex 1660 . . . . . 6  |-  F/ y E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  ph )
13 nfv 1551 . . . . . 6  |-  F/ y ps
1412, 13nfbi 1612 . . . . 5  |-  F/ y ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps )
15 opeq12 3821 . . . . . . . . 9  |-  ( ( x  =  A  /\  y  =  B )  -> 
<. x ,  y >.  =  <. A ,  B >. )
16 copsexg 4289 . . . . . . . . . 10  |-  ( <. A ,  B >.  = 
<. x ,  y >.  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
1716eqcoms 2208 . . . . . . . . 9  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
1815, 17syl 14 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
1918adantl 277 . . . . . . 7  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ps ) )  /\  ( x  =  A  /\  y  =  B
) )  ->  ( ph 
<->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  ph ) ) )
20 sp 1534 . . . . . . . . 9  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)  ->  A. y
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ps ) ) )
212019.21bi 1581 . . . . . . . 8  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)  ->  ( (
x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
) )
2221imp 124 . . . . . . 7  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ps ) )  /\  ( x  =  A  /\  y  =  B
) )  ->  ( ph 
<->  ps ) )
2319, 22bitr3d 190 . . . . . 6  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ps ) )  /\  ( x  =  A  /\  y  =  B
) )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ps )
)
2423ex 115 . . . . 5  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)  ->  ( (
x  =  A  /\  y  =  B )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) ) )
2510, 14, 24exlimd 1620 . . . 4  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)  ->  ( E. y ( x  =  A  /\  y  =  B )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ps )
) )
266, 9, 25exlimd 1620 . . 3  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)  ->  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ps )
) )
2726imp 124 . 2  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ps ) )  /\  E. x E. y ( x  =  A  /\  y  =  B )
)  ->  ( E. x E. y ( <. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ps )
)
285, 27sylan2 286 1  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ps ) )  /\  ( A  e.  V  /\  B  e.  W
) )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176   <.cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642
This theorem is referenced by:  opelopabt  4309
  Copyright terms: Public domain W3C validator