Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > copsex2t | Unicode version |
Description: Closed theorem form of copsex2g 4231. (Contributed by NM, 17-Feb-2013.) |
Ref | Expression |
---|---|
copsex2t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2744 | . . . 4 | |
2 | elisset 2744 | . . . 4 | |
3 | 1, 2 | anim12i 336 | . . 3 |
4 | eeanv 1925 | . . 3 | |
5 | 3, 4 | sylibr 133 | . 2 |
6 | nfa1 1534 | . . . 4 | |
7 | nfe1 1489 | . . . . 5 | |
8 | nfv 1521 | . . . . 5 | |
9 | 7, 8 | nfbi 1582 | . . . 4 |
10 | nfa2 1572 | . . . . 5 | |
11 | nfe1 1489 | . . . . . . 7 | |
12 | 11 | nfex 1630 | . . . . . 6 |
13 | nfv 1521 | . . . . . 6 | |
14 | 12, 13 | nfbi 1582 | . . . . 5 |
15 | opeq12 3767 | . . . . . . . . 9 | |
16 | copsexg 4229 | . . . . . . . . . 10 | |
17 | 16 | eqcoms 2173 | . . . . . . . . 9 |
18 | 15, 17 | syl 14 | . . . . . . . 8 |
19 | 18 | adantl 275 | . . . . . . 7 |
20 | sp 1504 | . . . . . . . . 9 | |
21 | 20 | 19.21bi 1551 | . . . . . . . 8 |
22 | 21 | imp 123 | . . . . . . 7 |
23 | 19, 22 | bitr3d 189 | . . . . . 6 |
24 | 23 | ex 114 | . . . . 5 |
25 | 10, 14, 24 | exlimd 1590 | . . . 4 |
26 | 6, 9, 25 | exlimd 1590 | . . 3 |
27 | 26 | imp 123 | . 2 |
28 | 5, 27 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wex 1485 wcel 2141 cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: opelopabt 4247 |
Copyright terms: Public domain | W3C validator |