Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > copsex2t | Unicode version |
Description: Closed theorem form of copsex2g 4224. (Contributed by NM, 17-Feb-2013.) |
Ref | Expression |
---|---|
copsex2t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2740 | . . . 4 | |
2 | elisset 2740 | . . . 4 | |
3 | 1, 2 | anim12i 336 | . . 3 |
4 | eeanv 1920 | . . 3 | |
5 | 3, 4 | sylibr 133 | . 2 |
6 | nfa1 1529 | . . . 4 | |
7 | nfe1 1484 | . . . . 5 | |
8 | nfv 1516 | . . . . 5 | |
9 | 7, 8 | nfbi 1577 | . . . 4 |
10 | nfa2 1567 | . . . . 5 | |
11 | nfe1 1484 | . . . . . . 7 | |
12 | 11 | nfex 1625 | . . . . . 6 |
13 | nfv 1516 | . . . . . 6 | |
14 | 12, 13 | nfbi 1577 | . . . . 5 |
15 | opeq12 3760 | . . . . . . . . 9 | |
16 | copsexg 4222 | . . . . . . . . . 10 | |
17 | 16 | eqcoms 2168 | . . . . . . . . 9 |
18 | 15, 17 | syl 14 | . . . . . . . 8 |
19 | 18 | adantl 275 | . . . . . . 7 |
20 | sp 1499 | . . . . . . . . 9 | |
21 | 20 | 19.21bi 1546 | . . . . . . . 8 |
22 | 21 | imp 123 | . . . . . . 7 |
23 | 19, 22 | bitr3d 189 | . . . . . 6 |
24 | 23 | ex 114 | . . . . 5 |
25 | 10, 14, 24 | exlimd 1585 | . . . 4 |
26 | 6, 9, 25 | exlimd 1585 | . . 3 |
27 | 26 | imp 123 | . 2 |
28 | 5, 27 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wex 1480 wcel 2136 cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: opelopabt 4240 |
Copyright terms: Public domain | W3C validator |