| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > copsex2t | Unicode version | ||
| Description: Closed theorem form of copsex2g 4279. (Contributed by NM, 17-Feb-2013.) | 
| Ref | Expression | 
|---|---|
| copsex2t | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elisset 2777 | 
. . . 4
 | |
| 2 | elisset 2777 | 
. . . 4
 | |
| 3 | 1, 2 | anim12i 338 | 
. . 3
 | 
| 4 | eeanv 1951 | 
. . 3
 | |
| 5 | 3, 4 | sylibr 134 | 
. 2
 | 
| 6 | nfa1 1555 | 
. . . 4
 | |
| 7 | nfe1 1510 | 
. . . . 5
 | |
| 8 | nfv 1542 | 
. . . . 5
 | |
| 9 | 7, 8 | nfbi 1603 | 
. . . 4
 | 
| 10 | nfa2 1593 | 
. . . . 5
 | |
| 11 | nfe1 1510 | 
. . . . . . 7
 | |
| 12 | 11 | nfex 1651 | 
. . . . . 6
 | 
| 13 | nfv 1542 | 
. . . . . 6
 | |
| 14 | 12, 13 | nfbi 1603 | 
. . . . 5
 | 
| 15 | opeq12 3810 | 
. . . . . . . . 9
 | |
| 16 | copsexg 4277 | 
. . . . . . . . . 10
 | |
| 17 | 16 | eqcoms 2199 | 
. . . . . . . . 9
 | 
| 18 | 15, 17 | syl 14 | 
. . . . . . . 8
 | 
| 19 | 18 | adantl 277 | 
. . . . . . 7
 | 
| 20 | sp 1525 | 
. . . . . . . . 9
 | |
| 21 | 20 | 19.21bi 1572 | 
. . . . . . . 8
 | 
| 22 | 21 | imp 124 | 
. . . . . . 7
 | 
| 23 | 19, 22 | bitr3d 190 | 
. . . . . 6
 | 
| 24 | 23 | ex 115 | 
. . . . 5
 | 
| 25 | 10, 14, 24 | exlimd 1611 | 
. . . 4
 | 
| 26 | 6, 9, 25 | exlimd 1611 | 
. . 3
 | 
| 27 | 26 | imp 124 | 
. 2
 | 
| 28 | 5, 27 | sylan2 286 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 | 
| This theorem is referenced by: opelopabt 4296 | 
| Copyright terms: Public domain | W3C validator |