| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > copsex2t | Unicode version | ||
| Description: Closed theorem form of copsex2g 4280. (Contributed by NM, 17-Feb-2013.) |
| Ref | Expression |
|---|---|
| copsex2t |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2777 |
. . . 4
| |
| 2 | elisset 2777 |
. . . 4
| |
| 3 | 1, 2 | anim12i 338 |
. . 3
|
| 4 | eeanv 1951 |
. . 3
| |
| 5 | 3, 4 | sylibr 134 |
. 2
|
| 6 | nfa1 1555 |
. . . 4
| |
| 7 | nfe1 1510 |
. . . . 5
| |
| 8 | nfv 1542 |
. . . . 5
| |
| 9 | 7, 8 | nfbi 1603 |
. . . 4
|
| 10 | nfa2 1593 |
. . . . 5
| |
| 11 | nfe1 1510 |
. . . . . . 7
| |
| 12 | 11 | nfex 1651 |
. . . . . 6
|
| 13 | nfv 1542 |
. . . . . 6
| |
| 14 | 12, 13 | nfbi 1603 |
. . . . 5
|
| 15 | opeq12 3811 |
. . . . . . . . 9
| |
| 16 | copsexg 4278 |
. . . . . . . . . 10
| |
| 17 | 16 | eqcoms 2199 |
. . . . . . . . 9
|
| 18 | 15, 17 | syl 14 |
. . . . . . . 8
|
| 19 | 18 | adantl 277 |
. . . . . . 7
|
| 20 | sp 1525 |
. . . . . . . . 9
| |
| 21 | 20 | 19.21bi 1572 |
. . . . . . . 8
|
| 22 | 21 | imp 124 |
. . . . . . 7
|
| 23 | 19, 22 | bitr3d 190 |
. . . . . 6
|
| 24 | 23 | ex 115 |
. . . . 5
|
| 25 | 10, 14, 24 | exlimd 1611 |
. . . 4
|
| 26 | 6, 9, 25 | exlimd 1611 |
. . 3
|
| 27 | 26 | imp 124 |
. 2
|
| 28 | 5, 27 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: opelopabt 4297 |
| Copyright terms: Public domain | W3C validator |