ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq1i Unicode version

Theorem opeq1i 3761
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1i.1  |-  A  =  B
Assertion
Ref Expression
opeq1i  |-  <. A ,  C >.  =  <. B ,  C >.

Proof of Theorem opeq1i
StepHypRef Expression
1 opeq1i.1 . 2  |-  A  =  B
2 opeq1 3758 . 2  |-  ( A  =  B  ->  <. A ,  C >.  =  <. B ,  C >. )
31, 2ax-mp 5 1  |-  <. A ,  C >.  =  <. B ,  C >.
Colors of variables: wff set class
Syntax hints:    = wceq 1343   <.cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585
This theorem is referenced by:  caucvgsrlemfv  7732  caucvgsr  7743  pitonnlem1  7786  axi2m1  7816  axcaucvg  7841  ennnfonelem1  12340  2strstr1g  12498  2strop1g  12500
  Copyright terms: Public domain W3C validator