ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2i Unicode version

Theorem opeq2i 3861
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1i.1  |-  A  =  B
Assertion
Ref Expression
opeq2i  |-  <. C ,  A >.  =  <. C ,  B >.

Proof of Theorem opeq2i
StepHypRef Expression
1 opeq1i.1 . 2  |-  A  =  B
2 opeq2 3858 . 2  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )
31, 2ax-mp 5 1  |-  <. C ,  A >.  =  <. C ,  B >.
Colors of variables: wff set class
Syntax hints:    = wceq 1395   <.cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  fnressn  5825  fressnfv  5826  nqprlu  7734  suplocexpr  7912  addresr  8024  iseqvalcbv  10681  pfx1  11235  pfxccatpfx2  11269  ressval2  13099  imasplusg  13341
  Copyright terms: Public domain W3C validator