ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2i Unicode version

Theorem opeq2i 3837
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1i.1  |-  A  =  B
Assertion
Ref Expression
opeq2i  |-  <. C ,  A >.  =  <. C ,  B >.

Proof of Theorem opeq2i
StepHypRef Expression
1 opeq1i.1 . 2  |-  A  =  B
2 opeq2 3834 . 2  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )
31, 2ax-mp 5 1  |-  <. C ,  A >.  =  <. C ,  B >.
Colors of variables: wff set class
Syntax hints:    = wceq 1373   <.cop 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652
This theorem is referenced by:  fnressn  5793  fressnfv  5794  nqprlu  7695  suplocexpr  7873  addresr  7985  iseqvalcbv  10641  pfx1  11194  pfxccatpfx2  11228  ressval2  13013  imasplusg  13255
  Copyright terms: Public domain W3C validator