ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq1i GIF version

Theorem opeq1i 3811
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
opeq1i 𝐴, 𝐶⟩ = ⟨𝐵, 𝐶

Proof of Theorem opeq1i
StepHypRef Expression
1 opeq1i.1 . 2 𝐴 = 𝐵
2 opeq1 3808 . 2 (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
31, 2ax-mp 5 1 𝐴, 𝐶⟩ = ⟨𝐵, 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cop 3625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631
This theorem is referenced by:  caucvgsrlemfv  7858  caucvgsr  7869  pitonnlem1  7912  axi2m1  7942  axcaucvg  7967  ennnfonelem1  12624  2strstr1g  12799  2strop1g  12801
  Copyright terms: Public domain W3C validator