| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq1i | GIF version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| opeq1i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | opeq1 3824 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 〈cop 3640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3643 df-pr 3644 df-op 3646 |
| This theorem is referenced by: caucvgsrlemfv 7919 caucvgsr 7930 pitonnlem1 7973 axi2m1 8003 axcaucvg 8028 ennnfonelem1 12848 2strstr1g 13024 2strop1g 13026 |
| Copyright terms: Public domain | W3C validator |