| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsr | Unicode version | ||
| Description: A Cauchy sequence of
signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within This is similar to caucvgprpr 7895 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7984). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7980).
3. Since a signed real (element of 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7978). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7983). (Contributed by Jim Kingdon, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f |
|
| caucvgsr.cau |
|
| Ref | Expression |
|---|---|
| caucvgsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsr.f |
. 2
| |
| 2 | caucvgsr.cau |
. 2
| |
| 3 | breq1 4085 |
. . . . . . . . . . . . 13
| |
| 4 | fveq2 5626 |
. . . . . . . . . . . . . . 15
| |
| 5 | opeq1 3856 |
. . . . . . . . . . . . . . . . . . . . . . . 24
| |
| 6 | 5 | eceq1d 6714 |
. . . . . . . . . . . . . . . . . . . . . . 23
|
| 7 | 6 | fveq2d 5630 |
. . . . . . . . . . . . . . . . . . . . . 22
|
| 8 | 7 | breq2d 4094 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 9 | 8 | abbidv 2347 |
. . . . . . . . . . . . . . . . . . . 20
|
| 10 | 7 | breq1d 4092 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 11 | 10 | abbidv 2347 |
. . . . . . . . . . . . . . . . . . . 20
|
| 12 | 9, 11 | opeq12d 3864 |
. . . . . . . . . . . . . . . . . . 19
|
| 13 | 12 | oveq1d 6015 |
. . . . . . . . . . . . . . . . . 18
|
| 14 | 13 | opeq1d 3862 |
. . . . . . . . . . . . . . . . 17
|
| 15 | 14 | eceq1d 6714 |
. . . . . . . . . . . . . . . 16
|
| 16 | 15 | oveq2d 6016 |
. . . . . . . . . . . . . . 15
|
| 17 | 4, 16 | breq12d 4095 |
. . . . . . . . . . . . . 14
|
| 18 | 4, 15 | oveq12d 6018 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | breq2d 4094 |
. . . . . . . . . . . . . 14
|
| 20 | 17, 19 | anbi12d 473 |
. . . . . . . . . . . . 13
|
| 21 | 3, 20 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 22 | 21 | ralbidv 2530 |
. . . . . . . . . . 11
|
| 23 | 1pi 7498 |
. . . . . . . . . . . 12
| |
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
|
| 25 | 22, 2, 24 | rspcdva 2912 |
. . . . . . . . . 10
|
| 26 | simpl 109 |
. . . . . . . . . . . 12
| |
| 27 | 26 | imim2i 12 |
. . . . . . . . . . 11
|
| 28 | 27 | ralimi 2593 |
. . . . . . . . . 10
|
| 29 | 25, 28 | syl 14 |
. . . . . . . . 9
|
| 30 | breq2 4086 |
. . . . . . . . . . 11
| |
| 31 | fveq2 5626 |
. . . . . . . . . . . . 13
| |
| 32 | 31 | oveq1d 6015 |
. . . . . . . . . . . 12
|
| 33 | 32 | breq2d 4094 |
. . . . . . . . . . 11
|
| 34 | 30, 33 | imbi12d 234 |
. . . . . . . . . 10
|
| 35 | 34 | rspcv 2903 |
. . . . . . . . 9
|
| 36 | 29, 35 | mpan9 281 |
. . . . . . . 8
|
| 37 | df-1nqqs 7534 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 38 | 37 | fveq2i 5629 |
. . . . . . . . . . . . . . . . . . 19
|
| 39 | rec1nq 7578 |
. . . . . . . . . . . . . . . . . . 19
| |
| 40 | 38, 39 | eqtr3i 2252 |
. . . . . . . . . . . . . . . . . 18
|
| 41 | 40 | breq2i 4090 |
. . . . . . . . . . . . . . . . 17
|
| 42 | 41 | abbii 2345 |
. . . . . . . . . . . . . . . 16
|
| 43 | 40 | breq1i 4089 |
. . . . . . . . . . . . . . . . 17
|
| 44 | 43 | abbii 2345 |
. . . . . . . . . . . . . . . 16
|
| 45 | 42, 44 | opeq12i 3861 |
. . . . . . . . . . . . . . 15
|
| 46 | df-i1p 7650 |
. . . . . . . . . . . . . . 15
| |
| 47 | 45, 46 | eqtr4i 2253 |
. . . . . . . . . . . . . 14
|
| 48 | 47 | oveq1i 6010 |
. . . . . . . . . . . . 13
|
| 49 | 48 | opeq1i 3859 |
. . . . . . . . . . . 12
|
| 50 | eceq1 6713 |
. . . . . . . . . . . 12
| |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . 11
|
| 52 | df-1r 7915 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | eqtr4i 2253 |
. . . . . . . . . 10
|
| 54 | 53 | oveq2i 6011 |
. . . . . . . . 9
|
| 55 | 54 | breq2i 4090 |
. . . . . . . 8
|
| 56 | 36, 55 | imbitrdi 161 |
. . . . . . 7
|
| 57 | 56 | imp 124 |
. . . . . 6
|
| 58 | 1 | adantr 276 |
. . . . . . . . . 10
|
| 59 | 23 | a1i 9 |
. . . . . . . . . 10
|
| 60 | 58, 59 | ffvelcdmd 5770 |
. . . . . . . . 9
|
| 61 | ltadd1sr 7959 |
. . . . . . . . 9
| |
| 62 | 60, 61 | syl 14 |
. . . . . . . 8
|
| 63 | 62 | adantr 276 |
. . . . . . 7
|
| 64 | fveq2 5626 |
. . . . . . . . 9
| |
| 65 | 64 | oveq1d 6015 |
. . . . . . . 8
|
| 66 | 65 | adantl 277 |
. . . . . . 7
|
| 67 | 63, 66 | breqtrd 4108 |
. . . . . 6
|
| 68 | nlt1pig 7524 |
. . . . . . . . 9
| |
| 69 | 68 | adantl 277 |
. . . . . . . 8
|
| 70 | 69 | pm2.21d 622 |
. . . . . . 7
|
| 71 | 70 | imp 124 |
. . . . . 6
|
| 72 | pitri3or 7505 |
. . . . . . . 8
| |
| 73 | 23, 72 | mpan 424 |
. . . . . . 7
|
| 74 | 73 | adantl 277 |
. . . . . 6
|
| 75 | 57, 67, 71, 74 | mpjao3dan 1341 |
. . . . 5
|
| 76 | ltasrg 7953 |
. . . . . . 7
| |
| 77 | 76 | adantl 277 |
. . . . . 6
|
| 78 | 1 | ffvelcdmda 5769 |
. . . . . . 7
|
| 79 | 1sr 7934 |
. . . . . . 7
| |
| 80 | addclsr 7936 |
. . . . . . 7
| |
| 81 | 78, 79, 80 | sylancl 413 |
. . . . . 6
|
| 82 | m1r 7935 |
. . . . . . 7
| |
| 83 | 82 | a1i 9 |
. . . . . 6
|
| 84 | addcomsrg 7938 |
. . . . . . 7
| |
| 85 | 84 | adantl 277 |
. . . . . 6
|
| 86 | 77, 60, 81, 83, 85 | caovord2d 6174 |
. . . . 5
|
| 87 | 75, 86 | mpbid 147 |
. . . 4
|
| 88 | 79 | a1i 9 |
. . . . . 6
|
| 89 | addasssrg 7939 |
. . . . . 6
| |
| 90 | 78, 88, 83, 89 | syl3anc 1271 |
. . . . 5
|
| 91 | addcomsrg 7938 |
. . . . . . . . 9
| |
| 92 | 79, 82, 91 | mp2an 426 |
. . . . . . . 8
|
| 93 | m1p1sr 7943 |
. . . . . . . 8
| |
| 94 | 92, 93 | eqtri 2250 |
. . . . . . 7
|
| 95 | 94 | oveq2i 6011 |
. . . . . 6
|
| 96 | 0idsr 7950 |
. . . . . . 7
| |
| 97 | 78, 96 | syl 14 |
. . . . . 6
|
| 98 | 95, 97 | eqtrid 2274 |
. . . . 5
|
| 99 | 90, 98 | eqtrd 2262 |
. . . 4
|
| 100 | 87, 99 | breqtrd 4108 |
. . 3
|
| 101 | 100 | ralrimiva 2603 |
. 2
|
| 102 | 1, 2, 101 | caucvgsrlembnd 7984 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-i1p 7650 df-iplp 7651 df-imp 7652 df-iltp 7653 df-enr 7909 df-nr 7910 df-plr 7911 df-mr 7912 df-ltr 7913 df-0r 7914 df-1r 7915 df-m1r 7916 |
| This theorem is referenced by: axcaucvglemres 8082 |
| Copyright terms: Public domain | W3C validator |