Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgsr | Unicode version |
Description: A Cauchy sequence of
signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within of the nth
term
(it should later be able to prove versions of this theorem with a
different fixed rate or a modulus of convergence supplied as a
hypothesis).
This is similar to caucvgprpr 7653 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7742). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7738). 3. Since a signed real (element of ) which is greater than zero can be mapped to a positive real (element of ), perform that mapping on each element of the sequence and invoke caucvgprpr 7653 to get a limit (see caucvgsrlemgt1 7736). 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7736). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7741). (Contributed by Jim Kingdon, 20-Jun-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | |
caucvgsr.cau |
Ref | Expression |
---|---|
caucvgsr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsr.f | . 2 | |
2 | caucvgsr.cau | . 2 | |
3 | breq1 3985 | . . . . . . . . . . . . 13 | |
4 | fveq2 5486 | . . . . . . . . . . . . . . 15 | |
5 | opeq1 3758 | . . . . . . . . . . . . . . . . . . . . . . . 24 | |
6 | 5 | eceq1d 6537 | . . . . . . . . . . . . . . . . . . . . . . 23 |
7 | 6 | fveq2d 5490 | . . . . . . . . . . . . . . . . . . . . . 22 |
8 | 7 | breq2d 3994 | . . . . . . . . . . . . . . . . . . . . 21 |
9 | 8 | abbidv 2284 | . . . . . . . . . . . . . . . . . . . 20 |
10 | 7 | breq1d 3992 | . . . . . . . . . . . . . . . . . . . . 21 |
11 | 10 | abbidv 2284 | . . . . . . . . . . . . . . . . . . . 20 |
12 | 9, 11 | opeq12d 3766 | . . . . . . . . . . . . . . . . . . 19 |
13 | 12 | oveq1d 5857 | . . . . . . . . . . . . . . . . . 18 |
14 | 13 | opeq1d 3764 | . . . . . . . . . . . . . . . . 17 |
15 | 14 | eceq1d 6537 | . . . . . . . . . . . . . . . 16 |
16 | 15 | oveq2d 5858 | . . . . . . . . . . . . . . 15 |
17 | 4, 16 | breq12d 3995 | . . . . . . . . . . . . . 14 |
18 | 4, 15 | oveq12d 5860 | . . . . . . . . . . . . . . 15 |
19 | 18 | breq2d 3994 | . . . . . . . . . . . . . 14 |
20 | 17, 19 | anbi12d 465 | . . . . . . . . . . . . 13 |
21 | 3, 20 | imbi12d 233 | . . . . . . . . . . . 12 |
22 | 21 | ralbidv 2466 | . . . . . . . . . . 11 |
23 | 1pi 7256 | . . . . . . . . . . . 12 | |
24 | 23 | a1i 9 | . . . . . . . . . . 11 |
25 | 22, 2, 24 | rspcdva 2835 | . . . . . . . . . 10 |
26 | simpl 108 | . . . . . . . . . . . 12 | |
27 | 26 | imim2i 12 | . . . . . . . . . . 11 |
28 | 27 | ralimi 2529 | . . . . . . . . . 10 |
29 | 25, 28 | syl 14 | . . . . . . . . 9 |
30 | breq2 3986 | . . . . . . . . . . 11 | |
31 | fveq2 5486 | . . . . . . . . . . . . 13 | |
32 | 31 | oveq1d 5857 | . . . . . . . . . . . 12 |
33 | 32 | breq2d 3994 | . . . . . . . . . . 11 |
34 | 30, 33 | imbi12d 233 | . . . . . . . . . 10 |
35 | 34 | rspcv 2826 | . . . . . . . . 9 |
36 | 29, 35 | mpan9 279 | . . . . . . . 8 |
37 | df-1nqqs 7292 | . . . . . . . . . . . . . . . . . . . 20 | |
38 | 37 | fveq2i 5489 | . . . . . . . . . . . . . . . . . . 19 |
39 | rec1nq 7336 | . . . . . . . . . . . . . . . . . . 19 | |
40 | 38, 39 | eqtr3i 2188 | . . . . . . . . . . . . . . . . . 18 |
41 | 40 | breq2i 3990 | . . . . . . . . . . . . . . . . 17 |
42 | 41 | abbii 2282 | . . . . . . . . . . . . . . . 16 |
43 | 40 | breq1i 3989 | . . . . . . . . . . . . . . . . 17 |
44 | 43 | abbii 2282 | . . . . . . . . . . . . . . . 16 |
45 | 42, 44 | opeq12i 3763 | . . . . . . . . . . . . . . 15 |
46 | df-i1p 7408 | . . . . . . . . . . . . . . 15 | |
47 | 45, 46 | eqtr4i 2189 | . . . . . . . . . . . . . 14 |
48 | 47 | oveq1i 5852 | . . . . . . . . . . . . 13 |
49 | 48 | opeq1i 3761 | . . . . . . . . . . . 12 |
50 | eceq1 6536 | . . . . . . . . . . . 12 | |
51 | 49, 50 | ax-mp 5 | . . . . . . . . . . 11 |
52 | df-1r 7673 | . . . . . . . . . . 11 | |
53 | 51, 52 | eqtr4i 2189 | . . . . . . . . . 10 |
54 | 53 | oveq2i 5853 | . . . . . . . . 9 |
55 | 54 | breq2i 3990 | . . . . . . . 8 |
56 | 36, 55 | syl6ib 160 | . . . . . . 7 |
57 | 56 | imp 123 | . . . . . 6 |
58 | 1 | adantr 274 | . . . . . . . . . 10 |
59 | 23 | a1i 9 | . . . . . . . . . 10 |
60 | 58, 59 | ffvelrnd 5621 | . . . . . . . . 9 |
61 | ltadd1sr 7717 | . . . . . . . . 9 | |
62 | 60, 61 | syl 14 | . . . . . . . 8 |
63 | 62 | adantr 274 | . . . . . . 7 |
64 | fveq2 5486 | . . . . . . . . 9 | |
65 | 64 | oveq1d 5857 | . . . . . . . 8 |
66 | 65 | adantl 275 | . . . . . . 7 |
67 | 63, 66 | breqtrd 4008 | . . . . . 6 |
68 | nlt1pig 7282 | . . . . . . . . 9 | |
69 | 68 | adantl 275 | . . . . . . . 8 |
70 | 69 | pm2.21d 609 | . . . . . . 7 |
71 | 70 | imp 123 | . . . . . 6 |
72 | pitri3or 7263 | . . . . . . . 8 | |
73 | 23, 72 | mpan 421 | . . . . . . 7 |
74 | 73 | adantl 275 | . . . . . 6 |
75 | 57, 67, 71, 74 | mpjao3dan 1297 | . . . . 5 |
76 | ltasrg 7711 | . . . . . . 7 | |
77 | 76 | adantl 275 | . . . . . 6 |
78 | 1 | ffvelrnda 5620 | . . . . . . 7 |
79 | 1sr 7692 | . . . . . . 7 | |
80 | addclsr 7694 | . . . . . . 7 | |
81 | 78, 79, 80 | sylancl 410 | . . . . . 6 |
82 | m1r 7693 | . . . . . . 7 | |
83 | 82 | a1i 9 | . . . . . 6 |
84 | addcomsrg 7696 | . . . . . . 7 | |
85 | 84 | adantl 275 | . . . . . 6 |
86 | 77, 60, 81, 83, 85 | caovord2d 6011 | . . . . 5 |
87 | 75, 86 | mpbid 146 | . . . 4 |
88 | 79 | a1i 9 | . . . . . 6 |
89 | addasssrg 7697 | . . . . . 6 | |
90 | 78, 88, 83, 89 | syl3anc 1228 | . . . . 5 |
91 | addcomsrg 7696 | . . . . . . . . 9 | |
92 | 79, 82, 91 | mp2an 423 | . . . . . . . 8 |
93 | m1p1sr 7701 | . . . . . . . 8 | |
94 | 92, 93 | eqtri 2186 | . . . . . . 7 |
95 | 94 | oveq2i 5853 | . . . . . 6 |
96 | 0idsr 7708 | . . . . . . 7 | |
97 | 78, 96 | syl 14 | . . . . . 6 |
98 | 95, 97 | syl5eq 2211 | . . . . 5 |
99 | 90, 98 | eqtrd 2198 | . . . 4 |
100 | 87, 99 | breqtrd 4008 | . . 3 |
101 | 100 | ralrimiva 2539 | . 2 |
102 | 1, 2, 101 | caucvgsrlembnd 7742 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 967 w3a 968 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 cop 3579 class class class wbr 3982 wf 5184 cfv 5188 (class class class)co 5842 c1o 6377 cec 6499 cnpi 7213 clti 7216 ceq 7220 c1q 7222 crq 7225 cltq 7226 c1p 7233 cpp 7234 cer 7237 cnr 7238 c0r 7239 c1r 7240 cm1r 7241 cplr 7242 cltr 7244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-imp 7410 df-iltp 7411 df-enr 7667 df-nr 7668 df-plr 7669 df-mr 7670 df-ltr 7671 df-0r 7672 df-1r 7673 df-m1r 7674 |
This theorem is referenced by: axcaucvglemres 7840 |
Copyright terms: Public domain | W3C validator |