ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsr Unicode version

Theorem caucvgsr 7864
Description: A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7774 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7863).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7859).

3. Since a signed real (element of  R.) which is greater than zero can be mapped to a positive real (element of  P.), perform that mapping on each element of the sequence and invoke caucvgprpr 7774 to get a limit (see caucvgsrlemgt1 7857).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7857).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7862). (Contributed by Jim Kingdon, 20-Jun-2021.)

Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
Assertion
Ref Expression
caucvgsr  |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( y  +R  x
)  /\  y  <R  ( ( F `  k
)  +R  x ) ) ) ) )
Distinct variable groups:    j, F, k, l, u    n, F, k, l, u    x, F, y, j, k    ph, j,
k, x    ph, n
Allowed substitution hints:    ph( y, u, l)

Proof of Theorem caucvgsr
Dummy variables  f  g  h  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . 2  |-  ( ph  ->  F : N. --> R. )
2 caucvgsr.cau . 2  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
3 breq1 4033 . . . . . . . . . . . . 13  |-  ( n  =  1o  ->  (
n  <N  k  <->  1o  <N  k ) )
4 fveq2 5555 . . . . . . . . . . . . . . 15  |-  ( n  =  1o  ->  ( F `  n )  =  ( F `  1o ) )
5 opeq1 3805 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  1o  ->  <. n ,  1o >.  =  <. 1o ,  1o >. )
65eceq1d 6625 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  1o  ->  [ <. n ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
76fveq2d 5559 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  1o  ->  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )
87breq2d 4042 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  1o  ->  (
l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <->  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) ) )
98abbidv 2311 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  1o  ->  { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } )
107breq1d 4040 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  1o  ->  (
( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u  <->  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u ) )
1110abbidv 2311 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  1o  ->  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u }  =  {
u  |  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } )
129, 11opeq12d 3813 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  1o  ->  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  =  <. { l  |  l  <Q 
( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >. )
1312oveq1d 5934 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  1o  ->  ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q 
( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) )
1413opeq1d 3811 . . . . . . . . . . . . . . . . 17  |-  ( n  =  1o  ->  <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. )
1514eceq1d 6625 . . . . . . . . . . . . . . . 16  |-  ( n  =  1o  ->  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1615oveq2d 5935 . . . . . . . . . . . . . . 15  |-  ( n  =  1o  ->  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
174, 16breq12d 4043 . . . . . . . . . . . . . 14  |-  ( n  =  1o  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
184, 15oveq12d 5937 . . . . . . . . . . . . . . 15  |-  ( n  =  1o  ->  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `  1o )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
1918breq2d 4042 . . . . . . . . . . . . . 14  |-  ( n  =  1o  ->  (
( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( F `  k
)  <R  ( ( F `
 1o )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
2017, 19anbi12d 473 . . . . . . . . . . . . 13  |-  ( n  =  1o  ->  (
( ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )  <->  ( ( F `  1o )  <R  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 1o )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
213, 20imbi12d 234 . . . . . . . . . . . 12  |-  ( n  =  1o  ->  (
( n  <N  k  ->  ( ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )  <->  ( 1o  <N  k  ->  ( ( F `  1o )  <R  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 1o )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
2221ralbidv 2494 . . . . . . . . . . 11  |-  ( n  =  1o  ->  ( A. k  e.  N.  ( n  <N  k  -> 
( ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )  <->  A. k  e.  N.  ( 1o  <N  k  ->  ( ( F `
 1o )  <R 
( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 1o )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
23 1pi 7377 . . . . . . . . . . . 12  |-  1o  e.  N.
2423a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  1o  e.  N. )
2522, 2, 24rspcdva 2870 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  N.  ( 1o  <N  k  -> 
( ( F `  1o )  <R  ( ( F `  k )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  1o )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
26 simpl 109 . . . . . . . . . . . 12  |-  ( ( ( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  1o )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )  ->  ( F `  1o )  <R  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
2726imim2i 12 . . . . . . . . . . 11  |-  ( ( 1o  <N  k  ->  ( ( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  1o )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )  -> 
( 1o  <N  k  ->  ( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
2827ralimi 2557 . . . . . . . . . 10  |-  ( A. k  e.  N.  ( 1o  <N  k  ->  (
( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  1o )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )  ->  A. k  e.  N.  ( 1o  <N  k  -> 
( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
2925, 28syl 14 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  N.  ( 1o  <N  k  -> 
( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
30 breq2 4034 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( 1o  <N  k  <->  1o  <N  m ) )
31 fveq2 5555 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
3231oveq1d 5934 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `  m )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
3332breq2d 4042 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( F `  1o )  <R  ( ( F `
 m )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
3430, 33imbi12d 234 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( 1o  <N  k  ->  ( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )  <->  ( 1o  <N  m  ->  ( F `  1o )  <R  (
( F `  m
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
3534rspcv 2861 . . . . . . . . 9  |-  ( m  e.  N.  ->  ( A. k  e.  N.  ( 1o  <N  k  -> 
( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )  ->  ( 1o  <N  m  ->  ( F `  1o )  <R  ( ( F `  m )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
) ) )
3629, 35mpan9 281 . . . . . . . 8  |-  ( (
ph  /\  m  e.  N. )  ->  ( 1o 
<N  m  ->  ( F `
 1o )  <R 
( ( F `  m )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
) )
37 df-1nqqs 7413 . . . . . . . . . . . . . . . . . . . 20  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
3837fveq2i 5558 . . . . . . . . . . . . . . . . . . 19  |-  ( *Q
`  1Q )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
39 rec1nq 7457 . . . . . . . . . . . . . . . . . . 19  |-  ( *Q
`  1Q )  =  1Q
4038, 39eqtr3i 2216 . . . . . . . . . . . . . . . . . 18  |-  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  =  1Q
4140breq2i 4038 . . . . . . . . . . . . . . . . 17  |-  ( l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <->  l  <Q  1Q )
4241abbii 2309 . . . . . . . . . . . . . . . 16  |-  { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  1Q }
4340breq1i 4037 . . . . . . . . . . . . . . . . 17  |-  ( ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u  <->  1Q  <Q  u )
4443abbii 2309 . . . . . . . . . . . . . . . 16  |-  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u }  =  {
u  |  1Q  <Q  u }
4542, 44opeq12i 3810 . . . . . . . . . . . . . . 15  |-  <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.
46 df-i1p 7529 . . . . . . . . . . . . . . 15  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
4745, 46eqtr4i 2217 . . . . . . . . . . . . . 14  |-  <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  =  1P
4847oveq1i 5929 . . . . . . . . . . . . 13  |-  ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  =  ( 1P  +P.  1P )
4948opeq1i 3808 . . . . . . . . . . . 12  |-  <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. ( 1P  +P.  1P ) ,  1P >.
50 eceq1 6624 . . . . . . . . . . . 12  |-  ( <.
( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. ( 1P  +P.  1P ) ,  1P >.  ->  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
5149, 50ax-mp 5 . . . . . . . . . . 11  |-  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
52 df-1r 7794 . . . . . . . . . . 11  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
5351, 52eqtr4i 2217 . . . . . . . . . 10  |-  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  1R
5453oveq2i 5930 . . . . . . . . 9  |-  ( ( F `  m )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `  m )  +R  1R )
5554breq2i 4038 . . . . . . . 8  |-  ( ( F `  1o ) 
<R  ( ( F `  m )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  <->  ( F `  1o ) 
<R  ( ( F `  m )  +R  1R ) )
5636, 55imbitrdi 161 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  ( 1o 
<N  m  ->  ( F `
 1o )  <R 
( ( F `  m )  +R  1R ) ) )
5756imp 124 . . . . . 6  |-  ( ( ( ph  /\  m  e.  N. )  /\  1o  <N  m )  ->  ( F `  1o )  <R  ( ( F `  m )  +R  1R ) )
581adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  N. )  ->  F : N.
--> R. )
5923a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  N. )  ->  1o  e.  N. )
6058, 59ffvelcdmd 5695 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  N. )  ->  ( F `
 1o )  e. 
R. )
61 ltadd1sr 7838 . . . . . . . . 9  |-  ( ( F `  1o )  e.  R.  ->  ( F `  1o )  <R  ( ( F `  1o )  +R  1R )
)
6260, 61syl 14 . . . . . . . 8  |-  ( (
ph  /\  m  e.  N. )  ->  ( F `
 1o )  <R 
( ( F `  1o )  +R  1R )
)
6362adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  N. )  /\  1o  =  m )  ->  ( F `  1o )  <R  ( ( F `  1o )  +R  1R )
)
64 fveq2 5555 . . . . . . . . 9  |-  ( 1o  =  m  ->  ( F `  1o )  =  ( F `  m ) )
6564oveq1d 5934 . . . . . . . 8  |-  ( 1o  =  m  ->  (
( F `  1o )  +R  1R )  =  ( ( F `  m )  +R  1R ) )
6665adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  N. )  /\  1o  =  m )  ->  (
( F `  1o )  +R  1R )  =  ( ( F `  m )  +R  1R ) )
6763, 66breqtrd 4056 . . . . . 6  |-  ( ( ( ph  /\  m  e.  N. )  /\  1o  =  m )  ->  ( F `  1o )  <R  ( ( F `  m )  +R  1R ) )
68 nlt1pig 7403 . . . . . . . . 9  |-  ( m  e.  N.  ->  -.  m  <N  1o )
6968adantl 277 . . . . . . . 8  |-  ( (
ph  /\  m  e.  N. )  ->  -.  m  <N  1o )
7069pm2.21d 620 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  ( m 
<N  1o  ->  ( F `  1o )  <R  (
( F `  m
)  +R  1R )
) )
7170imp 124 . . . . . 6  |-  ( ( ( ph  /\  m  e.  N. )  /\  m  <N  1o )  ->  ( F `  1o )  <R  ( ( F `  m )  +R  1R ) )
72 pitri3or 7384 . . . . . . . 8  |-  ( ( 1o  e.  N.  /\  m  e.  N. )  ->  ( 1o  <N  m  \/  1o  =  m  \/  m  <N  1o )
)
7323, 72mpan 424 . . . . . . 7  |-  ( m  e.  N.  ->  ( 1o  <N  m  \/  1o  =  m  \/  m  <N  1o ) )
7473adantl 277 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  ( 1o 
<N  m  \/  1o  =  m  \/  m  <N  1o ) )
7557, 67, 71, 74mpjao3dan 1318 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( F `
 1o )  <R 
( ( F `  m )  +R  1R ) )
76 ltasrg 7832 . . . . . . 7  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
f  <R  g  <->  ( h  +R  f )  <R  (
h  +R  g ) ) )
7776adantl 277 . . . . . 6  |-  ( ( ( ph  /\  m  e.  N. )  /\  (
f  e.  R.  /\  g  e.  R.  /\  h  e.  R. ) )  -> 
( f  <R  g  <->  ( h  +R  f ) 
<R  ( h  +R  g
) ) )
781ffvelcdmda 5694 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  ( F `
 m )  e. 
R. )
79 1sr 7813 . . . . . . 7  |-  1R  e.  R.
80 addclsr 7815 . . . . . . 7  |-  ( ( ( F `  m
)  e.  R.  /\  1R  e.  R. )  -> 
( ( F `  m )  +R  1R )  e.  R. )
8178, 79, 80sylancl 413 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  m )  +R  1R )  e. 
R. )
82 m1r 7814 . . . . . . 7  |-  -1R  e.  R.
8382a1i 9 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  -1R  e.  R. )
84 addcomsrg 7817 . . . . . . 7  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  =  ( g  +R  f ) )
8584adantl 277 . . . . . 6  |-  ( ( ( ph  /\  m  e.  N. )  /\  (
f  e.  R.  /\  g  e.  R. )
)  ->  ( f  +R  g )  =  ( g  +R  f ) )
8677, 60, 81, 83, 85caovord2d 6090 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  1o ) 
<R  ( ( F `  m )  +R  1R ) 
<->  ( ( F `  1o )  +R  -1R )  <R  ( ( ( F `
 m )  +R 
1R )  +R  -1R ) ) )
8775, 86mpbid 147 . . . 4  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  1o )  +R  -1R )  <R 
( ( ( F `
 m )  +R 
1R )  +R  -1R ) )
8879a1i 9 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  1R  e.  R. )
89 addasssrg 7818 . . . . . 6  |-  ( ( ( F `  m
)  e.  R.  /\  1R  e.  R.  /\  -1R  e.  R. )  ->  (
( ( F `  m )  +R  1R )  +R  -1R )  =  ( ( F `  m )  +R  ( 1R  +R  -1R ) ) )
9078, 88, 83, 89syl3anc 1249 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( ( F `  m
)  +R  1R )  +R  -1R )  =  ( ( F `  m
)  +R  ( 1R 
+R  -1R ) ) )
91 addcomsrg 7817 . . . . . . . . 9  |-  ( ( 1R  e.  R.  /\  -1R  e.  R. )  -> 
( 1R  +R  -1R )  =  ( -1R  +R 
1R ) )
9279, 82, 91mp2an 426 . . . . . . . 8  |-  ( 1R 
+R  -1R )  =  ( -1R  +R  1R )
93 m1p1sr 7822 . . . . . . . 8  |-  ( -1R 
+R  1R )  =  0R
9492, 93eqtri 2214 . . . . . . 7  |-  ( 1R 
+R  -1R )  =  0R
9594oveq2i 5930 . . . . . 6  |-  ( ( F `  m )  +R  ( 1R  +R  -1R ) )  =  ( ( F `  m
)  +R  0R )
96 0idsr 7829 . . . . . . 7  |-  ( ( F `  m )  e.  R.  ->  (
( F `  m
)  +R  0R )  =  ( F `  m ) )
9778, 96syl 14 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  m )  +R  0R )  =  ( F `  m
) )
9895, 97eqtrid 2238 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  m )  +R  ( 1R  +R  -1R ) )  =  ( F `  m ) )
9990, 98eqtrd 2226 . . . 4  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( ( F `  m
)  +R  1R )  +R  -1R )  =  ( F `  m ) )
10087, 99breqtrd 4056 . . 3  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  1o )  +R  -1R )  <R 
( F `  m
) )
101100ralrimiva 2567 . 2  |-  ( ph  ->  A. m  e.  N.  ( ( F `  1o )  +R  -1R )  <R  ( F `  m
) )
1021, 2, 101caucvgsrlembnd 7863 1  |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( y  +R  x
)  /\  y  <R  ( ( F `  k
)  +R  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   <.cop 3622   class class class wbr 4030   -->wf 5251   ` cfv 5255  (class class class)co 5919   1oc1o 6464   [cec 6587   N.cnpi 7334    <N clti 7337    ~Q ceq 7341   1Qc1q 7343   *Qcrq 7346    <Q cltq 7347   1Pc1p 7354    +P. cpp 7355    ~R cer 7358   R.cnr 7359   0Rc0r 7360   1Rc1r 7361   -1Rcm1r 7362    +R cplr 7363    <R cltr 7365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-imp 7531  df-iltp 7532  df-enr 7788  df-nr 7789  df-plr 7790  df-mr 7791  df-ltr 7792  df-0r 7793  df-1r 7794  df-m1r 7795
This theorem is referenced by:  axcaucvglemres  7961
  Copyright terms: Public domain W3C validator