ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsr Unicode version

Theorem caucvgsr 7886
Description: A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7796 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7885).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7881).

3. Since a signed real (element of  R.) which is greater than zero can be mapped to a positive real (element of  P.), perform that mapping on each element of the sequence and invoke caucvgprpr 7796 to get a limit (see caucvgsrlemgt1 7879).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7879).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7884). (Contributed by Jim Kingdon, 20-Jun-2021.)

Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
Assertion
Ref Expression
caucvgsr  |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( y  +R  x
)  /\  y  <R  ( ( F `  k
)  +R  x ) ) ) ) )
Distinct variable groups:    j, F, k, l, u    n, F, k, l, u    x, F, y, j, k    ph, j,
k, x    ph, n
Allowed substitution hints:    ph( y, u, l)

Proof of Theorem caucvgsr
Dummy variables  f  g  h  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . 2  |-  ( ph  ->  F : N. --> R. )
2 caucvgsr.cau . 2  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
3 breq1 4037 . . . . . . . . . . . . 13  |-  ( n  =  1o  ->  (
n  <N  k  <->  1o  <N  k ) )
4 fveq2 5561 . . . . . . . . . . . . . . 15  |-  ( n  =  1o  ->  ( F `  n )  =  ( F `  1o ) )
5 opeq1 3809 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  1o  ->  <. n ,  1o >.  =  <. 1o ,  1o >. )
65eceq1d 6637 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  1o  ->  [ <. n ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
76fveq2d 5565 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  1o  ->  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )
87breq2d 4046 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  1o  ->  (
l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <->  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) ) )
98abbidv 2314 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  1o  ->  { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } )
107breq1d 4044 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  1o  ->  (
( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u  <->  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u ) )
1110abbidv 2314 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  1o  ->  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u }  =  {
u  |  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } )
129, 11opeq12d 3817 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  1o  ->  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  =  <. { l  |  l  <Q 
( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >. )
1312oveq1d 5940 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  1o  ->  ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q 
( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) )
1413opeq1d 3815 . . . . . . . . . . . . . . . . 17  |-  ( n  =  1o  ->  <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. )
1514eceq1d 6637 . . . . . . . . . . . . . . . 16  |-  ( n  =  1o  ->  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1615oveq2d 5941 . . . . . . . . . . . . . . 15  |-  ( n  =  1o  ->  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
174, 16breq12d 4047 . . . . . . . . . . . . . 14  |-  ( n  =  1o  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
184, 15oveq12d 5943 . . . . . . . . . . . . . . 15  |-  ( n  =  1o  ->  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `  1o )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
1918breq2d 4046 . . . . . . . . . . . . . 14  |-  ( n  =  1o  ->  (
( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( F `  k
)  <R  ( ( F `
 1o )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
2017, 19anbi12d 473 . . . . . . . . . . . . 13  |-  ( n  =  1o  ->  (
( ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )  <->  ( ( F `  1o )  <R  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 1o )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
213, 20imbi12d 234 . . . . . . . . . . . 12  |-  ( n  =  1o  ->  (
( n  <N  k  ->  ( ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )  <->  ( 1o  <N  k  ->  ( ( F `  1o )  <R  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 1o )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
2221ralbidv 2497 . . . . . . . . . . 11  |-  ( n  =  1o  ->  ( A. k  e.  N.  ( n  <N  k  -> 
( ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )  <->  A. k  e.  N.  ( 1o  <N  k  ->  ( ( F `
 1o )  <R 
( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 1o )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
23 1pi 7399 . . . . . . . . . . . 12  |-  1o  e.  N.
2423a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  1o  e.  N. )
2522, 2, 24rspcdva 2873 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  N.  ( 1o  <N  k  -> 
( ( F `  1o )  <R  ( ( F `  k )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  1o )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
26 simpl 109 . . . . . . . . . . . 12  |-  ( ( ( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  1o )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )  ->  ( F `  1o )  <R  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
2726imim2i 12 . . . . . . . . . . 11  |-  ( ( 1o  <N  k  ->  ( ( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  1o )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )  -> 
( 1o  <N  k  ->  ( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
2827ralimi 2560 . . . . . . . . . 10  |-  ( A. k  e.  N.  ( 1o  <N  k  ->  (
( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  1o )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )  ->  A. k  e.  N.  ( 1o  <N  k  -> 
( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
2925, 28syl 14 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  N.  ( 1o  <N  k  -> 
( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
30 breq2 4038 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( 1o  <N  k  <->  1o  <N  m ) )
31 fveq2 5561 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
3231oveq1d 5940 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `  m )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
3332breq2d 4046 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( F `  1o )  <R  ( ( F `
 m )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
3430, 33imbi12d 234 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( 1o  <N  k  ->  ( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )  <->  ( 1o  <N  m  ->  ( F `  1o )  <R  (
( F `  m
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
3534rspcv 2864 . . . . . . . . 9  |-  ( m  e.  N.  ->  ( A. k  e.  N.  ( 1o  <N  k  -> 
( F `  1o )  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )  ->  ( 1o  <N  m  ->  ( F `  1o )  <R  ( ( F `  m )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
) ) )
3629, 35mpan9 281 . . . . . . . 8  |-  ( (
ph  /\  m  e.  N. )  ->  ( 1o 
<N  m  ->  ( F `
 1o )  <R 
( ( F `  m )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
) )
37 df-1nqqs 7435 . . . . . . . . . . . . . . . . . . . 20  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
3837fveq2i 5564 . . . . . . . . . . . . . . . . . . 19  |-  ( *Q
`  1Q )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
39 rec1nq 7479 . . . . . . . . . . . . . . . . . . 19  |-  ( *Q
`  1Q )  =  1Q
4038, 39eqtr3i 2219 . . . . . . . . . . . . . . . . . 18  |-  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  =  1Q
4140breq2i 4042 . . . . . . . . . . . . . . . . 17  |-  ( l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <->  l  <Q  1Q )
4241abbii 2312 . . . . . . . . . . . . . . . 16  |-  { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) }  =  { l  |  l  <Q  1Q }
4340breq1i 4041 . . . . . . . . . . . . . . . . 17  |-  ( ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u  <->  1Q  <Q  u )
4443abbii 2312 . . . . . . . . . . . . . . . 16  |-  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u }  =  {
u  |  1Q  <Q  u }
4542, 44opeq12i 3814 . . . . . . . . . . . . . . 15  |-  <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.
46 df-i1p 7551 . . . . . . . . . . . . . . 15  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
4745, 46eqtr4i 2220 . . . . . . . . . . . . . 14  |-  <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  =  1P
4847oveq1i 5935 . . . . . . . . . . . . 13  |-  ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P )  =  ( 1P  +P.  1P )
4948opeq1i 3812 . . . . . . . . . . . 12  |-  <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. ( 1P  +P.  1P ) ,  1P >.
50 eceq1 6636 . . . . . . . . . . . 12  |-  ( <.
( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. ( 1P  +P.  1P ) ,  1P >.  ->  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
5149, 50ax-mp 5 . . . . . . . . . . 11  |-  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
52 df-1r 7816 . . . . . . . . . . 11  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
5351, 52eqtr4i 2220 . . . . . . . . . 10  |-  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  1R
5453oveq2i 5936 . . . . . . . . 9  |-  ( ( F `  m )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `  m )  +R  1R )
5554breq2i 4042 . . . . . . . 8  |-  ( ( F `  1o ) 
<R  ( ( F `  m )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  <->  ( F `  1o ) 
<R  ( ( F `  m )  +R  1R ) )
5636, 55imbitrdi 161 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  ( 1o 
<N  m  ->  ( F `
 1o )  <R 
( ( F `  m )  +R  1R ) ) )
5756imp 124 . . . . . 6  |-  ( ( ( ph  /\  m  e.  N. )  /\  1o  <N  m )  ->  ( F `  1o )  <R  ( ( F `  m )  +R  1R ) )
581adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  N. )  ->  F : N.
--> R. )
5923a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  N. )  ->  1o  e.  N. )
6058, 59ffvelcdmd 5701 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  N. )  ->  ( F `
 1o )  e. 
R. )
61 ltadd1sr 7860 . . . . . . . . 9  |-  ( ( F `  1o )  e.  R.  ->  ( F `  1o )  <R  ( ( F `  1o )  +R  1R )
)
6260, 61syl 14 . . . . . . . 8  |-  ( (
ph  /\  m  e.  N. )  ->  ( F `
 1o )  <R 
( ( F `  1o )  +R  1R )
)
6362adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  N. )  /\  1o  =  m )  ->  ( F `  1o )  <R  ( ( F `  1o )  +R  1R )
)
64 fveq2 5561 . . . . . . . . 9  |-  ( 1o  =  m  ->  ( F `  1o )  =  ( F `  m ) )
6564oveq1d 5940 . . . . . . . 8  |-  ( 1o  =  m  ->  (
( F `  1o )  +R  1R )  =  ( ( F `  m )  +R  1R ) )
6665adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  N. )  /\  1o  =  m )  ->  (
( F `  1o )  +R  1R )  =  ( ( F `  m )  +R  1R ) )
6763, 66breqtrd 4060 . . . . . 6  |-  ( ( ( ph  /\  m  e.  N. )  /\  1o  =  m )  ->  ( F `  1o )  <R  ( ( F `  m )  +R  1R ) )
68 nlt1pig 7425 . . . . . . . . 9  |-  ( m  e.  N.  ->  -.  m  <N  1o )
6968adantl 277 . . . . . . . 8  |-  ( (
ph  /\  m  e.  N. )  ->  -.  m  <N  1o )
7069pm2.21d 620 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  ( m 
<N  1o  ->  ( F `  1o )  <R  (
( F `  m
)  +R  1R )
) )
7170imp 124 . . . . . 6  |-  ( ( ( ph  /\  m  e.  N. )  /\  m  <N  1o )  ->  ( F `  1o )  <R  ( ( F `  m )  +R  1R ) )
72 pitri3or 7406 . . . . . . . 8  |-  ( ( 1o  e.  N.  /\  m  e.  N. )  ->  ( 1o  <N  m  \/  1o  =  m  \/  m  <N  1o )
)
7323, 72mpan 424 . . . . . . 7  |-  ( m  e.  N.  ->  ( 1o  <N  m  \/  1o  =  m  \/  m  <N  1o ) )
7473adantl 277 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  ( 1o 
<N  m  \/  1o  =  m  \/  m  <N  1o ) )
7557, 67, 71, 74mpjao3dan 1318 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( F `
 1o )  <R 
( ( F `  m )  +R  1R ) )
76 ltasrg 7854 . . . . . . 7  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
f  <R  g  <->  ( h  +R  f )  <R  (
h  +R  g ) ) )
7776adantl 277 . . . . . 6  |-  ( ( ( ph  /\  m  e.  N. )  /\  (
f  e.  R.  /\  g  e.  R.  /\  h  e.  R. ) )  -> 
( f  <R  g  <->  ( h  +R  f ) 
<R  ( h  +R  g
) ) )
781ffvelcdmda 5700 . . . . . . 7  |-  ( (
ph  /\  m  e.  N. )  ->  ( F `
 m )  e. 
R. )
79 1sr 7835 . . . . . . 7  |-  1R  e.  R.
80 addclsr 7837 . . . . . . 7  |-  ( ( ( F `  m
)  e.  R.  /\  1R  e.  R. )  -> 
( ( F `  m )  +R  1R )  e.  R. )
8178, 79, 80sylancl 413 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  m )  +R  1R )  e. 
R. )
82 m1r 7836 . . . . . . 7  |-  -1R  e.  R.
8382a1i 9 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  -1R  e.  R. )
84 addcomsrg 7839 . . . . . . 7  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  =  ( g  +R  f ) )
8584adantl 277 . . . . . 6  |-  ( ( ( ph  /\  m  e.  N. )  /\  (
f  e.  R.  /\  g  e.  R. )
)  ->  ( f  +R  g )  =  ( g  +R  f ) )
8677, 60, 81, 83, 85caovord2d 6097 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  1o ) 
<R  ( ( F `  m )  +R  1R ) 
<->  ( ( F `  1o )  +R  -1R )  <R  ( ( ( F `
 m )  +R 
1R )  +R  -1R ) ) )
8775, 86mpbid 147 . . . 4  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  1o )  +R  -1R )  <R 
( ( ( F `
 m )  +R 
1R )  +R  -1R ) )
8879a1i 9 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  1R  e.  R. )
89 addasssrg 7840 . . . . . 6  |-  ( ( ( F `  m
)  e.  R.  /\  1R  e.  R.  /\  -1R  e.  R. )  ->  (
( ( F `  m )  +R  1R )  +R  -1R )  =  ( ( F `  m )  +R  ( 1R  +R  -1R ) ) )
9078, 88, 83, 89syl3anc 1249 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( ( F `  m
)  +R  1R )  +R  -1R )  =  ( ( F `  m
)  +R  ( 1R 
+R  -1R ) ) )
91 addcomsrg 7839 . . . . . . . . 9  |-  ( ( 1R  e.  R.  /\  -1R  e.  R. )  -> 
( 1R  +R  -1R )  =  ( -1R  +R 
1R ) )
9279, 82, 91mp2an 426 . . . . . . . 8  |-  ( 1R 
+R  -1R )  =  ( -1R  +R  1R )
93 m1p1sr 7844 . . . . . . . 8  |-  ( -1R 
+R  1R )  =  0R
9492, 93eqtri 2217 . . . . . . 7  |-  ( 1R 
+R  -1R )  =  0R
9594oveq2i 5936 . . . . . 6  |-  ( ( F `  m )  +R  ( 1R  +R  -1R ) )  =  ( ( F `  m
)  +R  0R )
96 0idsr 7851 . . . . . . 7  |-  ( ( F `  m )  e.  R.  ->  (
( F `  m
)  +R  0R )  =  ( F `  m ) )
9778, 96syl 14 . . . . . 6  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  m )  +R  0R )  =  ( F `  m
) )
9895, 97eqtrid 2241 . . . . 5  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  m )  +R  ( 1R  +R  -1R ) )  =  ( F `  m ) )
9990, 98eqtrd 2229 . . . 4  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( ( F `  m
)  +R  1R )  +R  -1R )  =  ( F `  m ) )
10087, 99breqtrd 4060 . . 3  |-  ( (
ph  /\  m  e.  N. )  ->  ( ( F `  1o )  +R  -1R )  <R 
( F `  m
) )
101100ralrimiva 2570 . 2  |-  ( ph  ->  A. m  e.  N.  ( ( F `  1o )  +R  -1R )  <R  ( F `  m
) )
1021, 2, 101caucvgsrlembnd 7885 1  |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( y  +R  x
)  /\  y  <R  ( ( F `  k
)  +R  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   <.cop 3626   class class class wbr 4034   -->wf 5255   ` cfv 5259  (class class class)co 5925   1oc1o 6476   [cec 6599   N.cnpi 7356    <N clti 7359    ~Q ceq 7363   1Qc1q 7365   *Qcrq 7368    <Q cltq 7369   1Pc1p 7376    +P. cpp 7377    ~R cer 7380   R.cnr 7381   0Rc0r 7382   1Rc1r 7383   -1Rcm1r 7384    +R cplr 7385    <R cltr 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-imp 7553  df-iltp 7554  df-enr 7810  df-nr 7811  df-plr 7812  df-mr 7813  df-ltr 7814  df-0r 7815  df-1r 7816  df-m1r 7817
This theorem is referenced by:  axcaucvglemres  7983
  Copyright terms: Public domain W3C validator