| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsr | Unicode version | ||
| Description: A Cauchy sequence of
signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within This is similar to caucvgprpr 7860 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7949). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7945).
3. Since a signed real (element of 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7943). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7948). (Contributed by Jim Kingdon, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f |
|
| caucvgsr.cau |
|
| Ref | Expression |
|---|---|
| caucvgsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsr.f |
. 2
| |
| 2 | caucvgsr.cau |
. 2
| |
| 3 | breq1 4062 |
. . . . . . . . . . . . 13
| |
| 4 | fveq2 5599 |
. . . . . . . . . . . . . . 15
| |
| 5 | opeq1 3833 |
. . . . . . . . . . . . . . . . . . . . . . . 24
| |
| 6 | 5 | eceq1d 6679 |
. . . . . . . . . . . . . . . . . . . . . . 23
|
| 7 | 6 | fveq2d 5603 |
. . . . . . . . . . . . . . . . . . . . . 22
|
| 8 | 7 | breq2d 4071 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 9 | 8 | abbidv 2325 |
. . . . . . . . . . . . . . . . . . . 20
|
| 10 | 7 | breq1d 4069 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 11 | 10 | abbidv 2325 |
. . . . . . . . . . . . . . . . . . . 20
|
| 12 | 9, 11 | opeq12d 3841 |
. . . . . . . . . . . . . . . . . . 19
|
| 13 | 12 | oveq1d 5982 |
. . . . . . . . . . . . . . . . . 18
|
| 14 | 13 | opeq1d 3839 |
. . . . . . . . . . . . . . . . 17
|
| 15 | 14 | eceq1d 6679 |
. . . . . . . . . . . . . . . 16
|
| 16 | 15 | oveq2d 5983 |
. . . . . . . . . . . . . . 15
|
| 17 | 4, 16 | breq12d 4072 |
. . . . . . . . . . . . . 14
|
| 18 | 4, 15 | oveq12d 5985 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | breq2d 4071 |
. . . . . . . . . . . . . 14
|
| 20 | 17, 19 | anbi12d 473 |
. . . . . . . . . . . . 13
|
| 21 | 3, 20 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 22 | 21 | ralbidv 2508 |
. . . . . . . . . . 11
|
| 23 | 1pi 7463 |
. . . . . . . . . . . 12
| |
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
|
| 25 | 22, 2, 24 | rspcdva 2889 |
. . . . . . . . . 10
|
| 26 | simpl 109 |
. . . . . . . . . . . 12
| |
| 27 | 26 | imim2i 12 |
. . . . . . . . . . 11
|
| 28 | 27 | ralimi 2571 |
. . . . . . . . . 10
|
| 29 | 25, 28 | syl 14 |
. . . . . . . . 9
|
| 30 | breq2 4063 |
. . . . . . . . . . 11
| |
| 31 | fveq2 5599 |
. . . . . . . . . . . . 13
| |
| 32 | 31 | oveq1d 5982 |
. . . . . . . . . . . 12
|
| 33 | 32 | breq2d 4071 |
. . . . . . . . . . 11
|
| 34 | 30, 33 | imbi12d 234 |
. . . . . . . . . 10
|
| 35 | 34 | rspcv 2880 |
. . . . . . . . 9
|
| 36 | 29, 35 | mpan9 281 |
. . . . . . . 8
|
| 37 | df-1nqqs 7499 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 38 | 37 | fveq2i 5602 |
. . . . . . . . . . . . . . . . . . 19
|
| 39 | rec1nq 7543 |
. . . . . . . . . . . . . . . . . . 19
| |
| 40 | 38, 39 | eqtr3i 2230 |
. . . . . . . . . . . . . . . . . 18
|
| 41 | 40 | breq2i 4067 |
. . . . . . . . . . . . . . . . 17
|
| 42 | 41 | abbii 2323 |
. . . . . . . . . . . . . . . 16
|
| 43 | 40 | breq1i 4066 |
. . . . . . . . . . . . . . . . 17
|
| 44 | 43 | abbii 2323 |
. . . . . . . . . . . . . . . 16
|
| 45 | 42, 44 | opeq12i 3838 |
. . . . . . . . . . . . . . 15
|
| 46 | df-i1p 7615 |
. . . . . . . . . . . . . . 15
| |
| 47 | 45, 46 | eqtr4i 2231 |
. . . . . . . . . . . . . 14
|
| 48 | 47 | oveq1i 5977 |
. . . . . . . . . . . . 13
|
| 49 | 48 | opeq1i 3836 |
. . . . . . . . . . . 12
|
| 50 | eceq1 6678 |
. . . . . . . . . . . 12
| |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . 11
|
| 52 | df-1r 7880 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | eqtr4i 2231 |
. . . . . . . . . 10
|
| 54 | 53 | oveq2i 5978 |
. . . . . . . . 9
|
| 55 | 54 | breq2i 4067 |
. . . . . . . 8
|
| 56 | 36, 55 | imbitrdi 161 |
. . . . . . 7
|
| 57 | 56 | imp 124 |
. . . . . 6
|
| 58 | 1 | adantr 276 |
. . . . . . . . . 10
|
| 59 | 23 | a1i 9 |
. . . . . . . . . 10
|
| 60 | 58, 59 | ffvelcdmd 5739 |
. . . . . . . . 9
|
| 61 | ltadd1sr 7924 |
. . . . . . . . 9
| |
| 62 | 60, 61 | syl 14 |
. . . . . . . 8
|
| 63 | 62 | adantr 276 |
. . . . . . 7
|
| 64 | fveq2 5599 |
. . . . . . . . 9
| |
| 65 | 64 | oveq1d 5982 |
. . . . . . . 8
|
| 66 | 65 | adantl 277 |
. . . . . . 7
|
| 67 | 63, 66 | breqtrd 4085 |
. . . . . 6
|
| 68 | nlt1pig 7489 |
. . . . . . . . 9
| |
| 69 | 68 | adantl 277 |
. . . . . . . 8
|
| 70 | 69 | pm2.21d 620 |
. . . . . . 7
|
| 71 | 70 | imp 124 |
. . . . . 6
|
| 72 | pitri3or 7470 |
. . . . . . . 8
| |
| 73 | 23, 72 | mpan 424 |
. . . . . . 7
|
| 74 | 73 | adantl 277 |
. . . . . 6
|
| 75 | 57, 67, 71, 74 | mpjao3dan 1320 |
. . . . 5
|
| 76 | ltasrg 7918 |
. . . . . . 7
| |
| 77 | 76 | adantl 277 |
. . . . . 6
|
| 78 | 1 | ffvelcdmda 5738 |
. . . . . . 7
|
| 79 | 1sr 7899 |
. . . . . . 7
| |
| 80 | addclsr 7901 |
. . . . . . 7
| |
| 81 | 78, 79, 80 | sylancl 413 |
. . . . . 6
|
| 82 | m1r 7900 |
. . . . . . 7
| |
| 83 | 82 | a1i 9 |
. . . . . 6
|
| 84 | addcomsrg 7903 |
. . . . . . 7
| |
| 85 | 84 | adantl 277 |
. . . . . 6
|
| 86 | 77, 60, 81, 83, 85 | caovord2d 6139 |
. . . . 5
|
| 87 | 75, 86 | mpbid 147 |
. . . 4
|
| 88 | 79 | a1i 9 |
. . . . . 6
|
| 89 | addasssrg 7904 |
. . . . . 6
| |
| 90 | 78, 88, 83, 89 | syl3anc 1250 |
. . . . 5
|
| 91 | addcomsrg 7903 |
. . . . . . . . 9
| |
| 92 | 79, 82, 91 | mp2an 426 |
. . . . . . . 8
|
| 93 | m1p1sr 7908 |
. . . . . . . 8
| |
| 94 | 92, 93 | eqtri 2228 |
. . . . . . 7
|
| 95 | 94 | oveq2i 5978 |
. . . . . 6
|
| 96 | 0idsr 7915 |
. . . . . . 7
| |
| 97 | 78, 96 | syl 14 |
. . . . . 6
|
| 98 | 95, 97 | eqtrid 2252 |
. . . . 5
|
| 99 | 90, 98 | eqtrd 2240 |
. . . 4
|
| 100 | 87, 99 | breqtrd 4085 |
. . 3
|
| 101 | 100 | ralrimiva 2581 |
. 2
|
| 102 | 1, 2, 101 | caucvgsrlembnd 7949 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-iplp 7616 df-imp 7617 df-iltp 7618 df-enr 7874 df-nr 7875 df-plr 7876 df-mr 7877 df-ltr 7878 df-0r 7879 df-1r 7880 df-m1r 7881 |
| This theorem is referenced by: axcaucvglemres 8047 |
| Copyright terms: Public domain | W3C validator |