| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsr | Unicode version | ||
| Description: A Cauchy sequence of
signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within This is similar to caucvgprpr 7825 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7914). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7910).
3. Since a signed real (element of 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7908). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7913). (Contributed by Jim Kingdon, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f |
|
| caucvgsr.cau |
|
| Ref | Expression |
|---|---|
| caucvgsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsr.f |
. 2
| |
| 2 | caucvgsr.cau |
. 2
| |
| 3 | breq1 4047 |
. . . . . . . . . . . . 13
| |
| 4 | fveq2 5576 |
. . . . . . . . . . . . . . 15
| |
| 5 | opeq1 3819 |
. . . . . . . . . . . . . . . . . . . . . . . 24
| |
| 6 | 5 | eceq1d 6656 |
. . . . . . . . . . . . . . . . . . . . . . 23
|
| 7 | 6 | fveq2d 5580 |
. . . . . . . . . . . . . . . . . . . . . 22
|
| 8 | 7 | breq2d 4056 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 9 | 8 | abbidv 2323 |
. . . . . . . . . . . . . . . . . . . 20
|
| 10 | 7 | breq1d 4054 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 11 | 10 | abbidv 2323 |
. . . . . . . . . . . . . . . . . . . 20
|
| 12 | 9, 11 | opeq12d 3827 |
. . . . . . . . . . . . . . . . . . 19
|
| 13 | 12 | oveq1d 5959 |
. . . . . . . . . . . . . . . . . 18
|
| 14 | 13 | opeq1d 3825 |
. . . . . . . . . . . . . . . . 17
|
| 15 | 14 | eceq1d 6656 |
. . . . . . . . . . . . . . . 16
|
| 16 | 15 | oveq2d 5960 |
. . . . . . . . . . . . . . 15
|
| 17 | 4, 16 | breq12d 4057 |
. . . . . . . . . . . . . 14
|
| 18 | 4, 15 | oveq12d 5962 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | breq2d 4056 |
. . . . . . . . . . . . . 14
|
| 20 | 17, 19 | anbi12d 473 |
. . . . . . . . . . . . 13
|
| 21 | 3, 20 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 22 | 21 | ralbidv 2506 |
. . . . . . . . . . 11
|
| 23 | 1pi 7428 |
. . . . . . . . . . . 12
| |
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
|
| 25 | 22, 2, 24 | rspcdva 2882 |
. . . . . . . . . 10
|
| 26 | simpl 109 |
. . . . . . . . . . . 12
| |
| 27 | 26 | imim2i 12 |
. . . . . . . . . . 11
|
| 28 | 27 | ralimi 2569 |
. . . . . . . . . 10
|
| 29 | 25, 28 | syl 14 |
. . . . . . . . 9
|
| 30 | breq2 4048 |
. . . . . . . . . . 11
| |
| 31 | fveq2 5576 |
. . . . . . . . . . . . 13
| |
| 32 | 31 | oveq1d 5959 |
. . . . . . . . . . . 12
|
| 33 | 32 | breq2d 4056 |
. . . . . . . . . . 11
|
| 34 | 30, 33 | imbi12d 234 |
. . . . . . . . . 10
|
| 35 | 34 | rspcv 2873 |
. . . . . . . . 9
|
| 36 | 29, 35 | mpan9 281 |
. . . . . . . 8
|
| 37 | df-1nqqs 7464 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 38 | 37 | fveq2i 5579 |
. . . . . . . . . . . . . . . . . . 19
|
| 39 | rec1nq 7508 |
. . . . . . . . . . . . . . . . . . 19
| |
| 40 | 38, 39 | eqtr3i 2228 |
. . . . . . . . . . . . . . . . . 18
|
| 41 | 40 | breq2i 4052 |
. . . . . . . . . . . . . . . . 17
|
| 42 | 41 | abbii 2321 |
. . . . . . . . . . . . . . . 16
|
| 43 | 40 | breq1i 4051 |
. . . . . . . . . . . . . . . . 17
|
| 44 | 43 | abbii 2321 |
. . . . . . . . . . . . . . . 16
|
| 45 | 42, 44 | opeq12i 3824 |
. . . . . . . . . . . . . . 15
|
| 46 | df-i1p 7580 |
. . . . . . . . . . . . . . 15
| |
| 47 | 45, 46 | eqtr4i 2229 |
. . . . . . . . . . . . . 14
|
| 48 | 47 | oveq1i 5954 |
. . . . . . . . . . . . 13
|
| 49 | 48 | opeq1i 3822 |
. . . . . . . . . . . 12
|
| 50 | eceq1 6655 |
. . . . . . . . . . . 12
| |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . 11
|
| 52 | df-1r 7845 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | eqtr4i 2229 |
. . . . . . . . . 10
|
| 54 | 53 | oveq2i 5955 |
. . . . . . . . 9
|
| 55 | 54 | breq2i 4052 |
. . . . . . . 8
|
| 56 | 36, 55 | imbitrdi 161 |
. . . . . . 7
|
| 57 | 56 | imp 124 |
. . . . . 6
|
| 58 | 1 | adantr 276 |
. . . . . . . . . 10
|
| 59 | 23 | a1i 9 |
. . . . . . . . . 10
|
| 60 | 58, 59 | ffvelcdmd 5716 |
. . . . . . . . 9
|
| 61 | ltadd1sr 7889 |
. . . . . . . . 9
| |
| 62 | 60, 61 | syl 14 |
. . . . . . . 8
|
| 63 | 62 | adantr 276 |
. . . . . . 7
|
| 64 | fveq2 5576 |
. . . . . . . . 9
| |
| 65 | 64 | oveq1d 5959 |
. . . . . . . 8
|
| 66 | 65 | adantl 277 |
. . . . . . 7
|
| 67 | 63, 66 | breqtrd 4070 |
. . . . . 6
|
| 68 | nlt1pig 7454 |
. . . . . . . . 9
| |
| 69 | 68 | adantl 277 |
. . . . . . . 8
|
| 70 | 69 | pm2.21d 620 |
. . . . . . 7
|
| 71 | 70 | imp 124 |
. . . . . 6
|
| 72 | pitri3or 7435 |
. . . . . . . 8
| |
| 73 | 23, 72 | mpan 424 |
. . . . . . 7
|
| 74 | 73 | adantl 277 |
. . . . . 6
|
| 75 | 57, 67, 71, 74 | mpjao3dan 1320 |
. . . . 5
|
| 76 | ltasrg 7883 |
. . . . . . 7
| |
| 77 | 76 | adantl 277 |
. . . . . 6
|
| 78 | 1 | ffvelcdmda 5715 |
. . . . . . 7
|
| 79 | 1sr 7864 |
. . . . . . 7
| |
| 80 | addclsr 7866 |
. . . . . . 7
| |
| 81 | 78, 79, 80 | sylancl 413 |
. . . . . 6
|
| 82 | m1r 7865 |
. . . . . . 7
| |
| 83 | 82 | a1i 9 |
. . . . . 6
|
| 84 | addcomsrg 7868 |
. . . . . . 7
| |
| 85 | 84 | adantl 277 |
. . . . . 6
|
| 86 | 77, 60, 81, 83, 85 | caovord2d 6116 |
. . . . 5
|
| 87 | 75, 86 | mpbid 147 |
. . . 4
|
| 88 | 79 | a1i 9 |
. . . . . 6
|
| 89 | addasssrg 7869 |
. . . . . 6
| |
| 90 | 78, 88, 83, 89 | syl3anc 1250 |
. . . . 5
|
| 91 | addcomsrg 7868 |
. . . . . . . . 9
| |
| 92 | 79, 82, 91 | mp2an 426 |
. . . . . . . 8
|
| 93 | m1p1sr 7873 |
. . . . . . . 8
| |
| 94 | 92, 93 | eqtri 2226 |
. . . . . . 7
|
| 95 | 94 | oveq2i 5955 |
. . . . . 6
|
| 96 | 0idsr 7880 |
. . . . . . 7
| |
| 97 | 78, 96 | syl 14 |
. . . . . 6
|
| 98 | 95, 97 | eqtrid 2250 |
. . . . 5
|
| 99 | 90, 98 | eqtrd 2238 |
. . . 4
|
| 100 | 87, 99 | breqtrd 4070 |
. . 3
|
| 101 | 100 | ralrimiva 2579 |
. 2
|
| 102 | 1, 2, 101 | caucvgsrlembnd 7914 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-i1p 7580 df-iplp 7581 df-imp 7582 df-iltp 7583 df-enr 7839 df-nr 7840 df-plr 7841 df-mr 7842 df-ltr 7843 df-0r 7844 df-1r 7845 df-m1r 7846 |
| This theorem is referenced by: axcaucvglemres 8012 |
| Copyright terms: Public domain | W3C validator |