| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsr | Unicode version | ||
| Description: A Cauchy sequence of
signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within This is similar to caucvgprpr 7824 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7913). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7909).
3. Since a signed real (element of 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7907). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7912). (Contributed by Jim Kingdon, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f |
|
| caucvgsr.cau |
|
| Ref | Expression |
|---|---|
| caucvgsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsr.f |
. 2
| |
| 2 | caucvgsr.cau |
. 2
| |
| 3 | breq1 4046 |
. . . . . . . . . . . . 13
| |
| 4 | fveq2 5575 |
. . . . . . . . . . . . . . 15
| |
| 5 | opeq1 3818 |
. . . . . . . . . . . . . . . . . . . . . . . 24
| |
| 6 | 5 | eceq1d 6655 |
. . . . . . . . . . . . . . . . . . . . . . 23
|
| 7 | 6 | fveq2d 5579 |
. . . . . . . . . . . . . . . . . . . . . 22
|
| 8 | 7 | breq2d 4055 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 9 | 8 | abbidv 2322 |
. . . . . . . . . . . . . . . . . . . 20
|
| 10 | 7 | breq1d 4053 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 11 | 10 | abbidv 2322 |
. . . . . . . . . . . . . . . . . . . 20
|
| 12 | 9, 11 | opeq12d 3826 |
. . . . . . . . . . . . . . . . . . 19
|
| 13 | 12 | oveq1d 5958 |
. . . . . . . . . . . . . . . . . 18
|
| 14 | 13 | opeq1d 3824 |
. . . . . . . . . . . . . . . . 17
|
| 15 | 14 | eceq1d 6655 |
. . . . . . . . . . . . . . . 16
|
| 16 | 15 | oveq2d 5959 |
. . . . . . . . . . . . . . 15
|
| 17 | 4, 16 | breq12d 4056 |
. . . . . . . . . . . . . 14
|
| 18 | 4, 15 | oveq12d 5961 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | breq2d 4055 |
. . . . . . . . . . . . . 14
|
| 20 | 17, 19 | anbi12d 473 |
. . . . . . . . . . . . 13
|
| 21 | 3, 20 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 22 | 21 | ralbidv 2505 |
. . . . . . . . . . 11
|
| 23 | 1pi 7427 |
. . . . . . . . . . . 12
| |
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
|
| 25 | 22, 2, 24 | rspcdva 2881 |
. . . . . . . . . 10
|
| 26 | simpl 109 |
. . . . . . . . . . . 12
| |
| 27 | 26 | imim2i 12 |
. . . . . . . . . . 11
|
| 28 | 27 | ralimi 2568 |
. . . . . . . . . 10
|
| 29 | 25, 28 | syl 14 |
. . . . . . . . 9
|
| 30 | breq2 4047 |
. . . . . . . . . . 11
| |
| 31 | fveq2 5575 |
. . . . . . . . . . . . 13
| |
| 32 | 31 | oveq1d 5958 |
. . . . . . . . . . . 12
|
| 33 | 32 | breq2d 4055 |
. . . . . . . . . . 11
|
| 34 | 30, 33 | imbi12d 234 |
. . . . . . . . . 10
|
| 35 | 34 | rspcv 2872 |
. . . . . . . . 9
|
| 36 | 29, 35 | mpan9 281 |
. . . . . . . 8
|
| 37 | df-1nqqs 7463 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 38 | 37 | fveq2i 5578 |
. . . . . . . . . . . . . . . . . . 19
|
| 39 | rec1nq 7507 |
. . . . . . . . . . . . . . . . . . 19
| |
| 40 | 38, 39 | eqtr3i 2227 |
. . . . . . . . . . . . . . . . . 18
|
| 41 | 40 | breq2i 4051 |
. . . . . . . . . . . . . . . . 17
|
| 42 | 41 | abbii 2320 |
. . . . . . . . . . . . . . . 16
|
| 43 | 40 | breq1i 4050 |
. . . . . . . . . . . . . . . . 17
|
| 44 | 43 | abbii 2320 |
. . . . . . . . . . . . . . . 16
|
| 45 | 42, 44 | opeq12i 3823 |
. . . . . . . . . . . . . . 15
|
| 46 | df-i1p 7579 |
. . . . . . . . . . . . . . 15
| |
| 47 | 45, 46 | eqtr4i 2228 |
. . . . . . . . . . . . . 14
|
| 48 | 47 | oveq1i 5953 |
. . . . . . . . . . . . 13
|
| 49 | 48 | opeq1i 3821 |
. . . . . . . . . . . 12
|
| 50 | eceq1 6654 |
. . . . . . . . . . . 12
| |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . 11
|
| 52 | df-1r 7844 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | eqtr4i 2228 |
. . . . . . . . . 10
|
| 54 | 53 | oveq2i 5954 |
. . . . . . . . 9
|
| 55 | 54 | breq2i 4051 |
. . . . . . . 8
|
| 56 | 36, 55 | imbitrdi 161 |
. . . . . . 7
|
| 57 | 56 | imp 124 |
. . . . . 6
|
| 58 | 1 | adantr 276 |
. . . . . . . . . 10
|
| 59 | 23 | a1i 9 |
. . . . . . . . . 10
|
| 60 | 58, 59 | ffvelcdmd 5715 |
. . . . . . . . 9
|
| 61 | ltadd1sr 7888 |
. . . . . . . . 9
| |
| 62 | 60, 61 | syl 14 |
. . . . . . . 8
|
| 63 | 62 | adantr 276 |
. . . . . . 7
|
| 64 | fveq2 5575 |
. . . . . . . . 9
| |
| 65 | 64 | oveq1d 5958 |
. . . . . . . 8
|
| 66 | 65 | adantl 277 |
. . . . . . 7
|
| 67 | 63, 66 | breqtrd 4069 |
. . . . . 6
|
| 68 | nlt1pig 7453 |
. . . . . . . . 9
| |
| 69 | 68 | adantl 277 |
. . . . . . . 8
|
| 70 | 69 | pm2.21d 620 |
. . . . . . 7
|
| 71 | 70 | imp 124 |
. . . . . 6
|
| 72 | pitri3or 7434 |
. . . . . . . 8
| |
| 73 | 23, 72 | mpan 424 |
. . . . . . 7
|
| 74 | 73 | adantl 277 |
. . . . . 6
|
| 75 | 57, 67, 71, 74 | mpjao3dan 1319 |
. . . . 5
|
| 76 | ltasrg 7882 |
. . . . . . 7
| |
| 77 | 76 | adantl 277 |
. . . . . 6
|
| 78 | 1 | ffvelcdmda 5714 |
. . . . . . 7
|
| 79 | 1sr 7863 |
. . . . . . 7
| |
| 80 | addclsr 7865 |
. . . . . . 7
| |
| 81 | 78, 79, 80 | sylancl 413 |
. . . . . 6
|
| 82 | m1r 7864 |
. . . . . . 7
| |
| 83 | 82 | a1i 9 |
. . . . . 6
|
| 84 | addcomsrg 7867 |
. . . . . . 7
| |
| 85 | 84 | adantl 277 |
. . . . . 6
|
| 86 | 77, 60, 81, 83, 85 | caovord2d 6115 |
. . . . 5
|
| 87 | 75, 86 | mpbid 147 |
. . . 4
|
| 88 | 79 | a1i 9 |
. . . . . 6
|
| 89 | addasssrg 7868 |
. . . . . 6
| |
| 90 | 78, 88, 83, 89 | syl3anc 1249 |
. . . . 5
|
| 91 | addcomsrg 7867 |
. . . . . . . . 9
| |
| 92 | 79, 82, 91 | mp2an 426 |
. . . . . . . 8
|
| 93 | m1p1sr 7872 |
. . . . . . . 8
| |
| 94 | 92, 93 | eqtri 2225 |
. . . . . . 7
|
| 95 | 94 | oveq2i 5954 |
. . . . . 6
|
| 96 | 0idsr 7879 |
. . . . . . 7
| |
| 97 | 78, 96 | syl 14 |
. . . . . 6
|
| 98 | 95, 97 | eqtrid 2249 |
. . . . 5
|
| 99 | 90, 98 | eqtrd 2237 |
. . . 4
|
| 100 | 87, 99 | breqtrd 4069 |
. . 3
|
| 101 | 100 | ralrimiva 2578 |
. 2
|
| 102 | 1, 2, 101 | caucvgsrlembnd 7913 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-2o 6502 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-enq0 7536 df-nq0 7537 df-0nq0 7538 df-plq0 7539 df-mq0 7540 df-inp 7578 df-i1p 7579 df-iplp 7580 df-imp 7581 df-iltp 7582 df-enr 7838 df-nr 7839 df-plr 7840 df-mr 7841 df-ltr 7842 df-0r 7843 df-1r 7844 df-m1r 7845 |
| This theorem is referenced by: axcaucvglemres 8011 |
| Copyright terms: Public domain | W3C validator |