ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2strop1g Unicode version

Theorem 2strop1g 11846
Description: The other slot of a constructed two-slot structure. Version of 2stropg 11843 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
Hypotheses
Ref Expression
2str1.g  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. N ,  .+  >. }
2str1.b  |-  ( Base `  ndx )  <  N
2str1.n  |-  N  e.  NN
2str1.e  |-  E  = Slot 
N
Assertion
Ref Expression
2strop1g  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  =  ( E `  G ) )

Proof of Theorem 2strop1g
StepHypRef Expression
1 2str1.e . . 3  |-  E  = Slot 
N
2 2str1.n . . 3  |-  N  e.  NN
31, 2ndxslid 11766 . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
4 2str1.g . . 3  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. N ,  .+  >. }
5 2str1.b . . 3  |-  ( Base `  ndx )  <  N
64, 5, 22strstr1g 11844 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  G Struct  <. ( Base `  ndx ) ,  N >. )
7 simpr 109 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  e.  W )
8 opexg 4088 . . . . 5  |-  ( ( N  e.  NN  /\  .+  e.  W )  ->  <. N ,  .+  >.  e. 
_V )
92, 7, 8sylancr 408 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. N ,  .+  >.  e. 
_V )
10 prid2g 3575 . . . 4  |-  ( <. N ,  .+  >.  e.  _V  -> 
<. N ,  .+  >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. N ,  .+  >. } )
119, 10syl 14 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. N ,  .+  >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. N ,  .+  >. } )
121, 2ndxarg 11764 . . . 4  |-  ( E `
 ndx )  =  N
1312opeq1i 3655 . . 3  |-  <. ( E `  ndx ) , 
.+  >.  =  <. N ,  .+  >.
1411, 13, 43eltr4g 2185 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( E `  ndx ) ,  .+  >.  e.  G
)
153, 6, 7, 14opelstrsl 11837 1  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  =  ( E `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299    e. wcel 1448   _Vcvv 2641   {cpr 3475   <.cop 3477   class class class wbr 3875   ` cfv 5059    < clt 7672   NNcn 8578   ndxcnx 11738  Slot cslot 11740   Basecbs 11741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-fz 9632  df-struct 11743  df-ndx 11744  df-slot 11745  df-base 11747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator