Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pitonnlem1 | Unicode version |
Description: Lemma for pitonn 7810. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.) |
Ref | Expression |
---|---|
pitonnlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1 7782 | . 2 | |
2 | df-1r 7694 | . . . 4 | |
3 | df-i1p 7429 | . . . . . . . 8 | |
4 | df-1nqqs 7313 | . . . . . . . . . . 11 | |
5 | 4 | breq2i 3997 | . . . . . . . . . 10 |
6 | 5 | abbii 2286 | . . . . . . . . 9 |
7 | 4 | breq1i 3996 | . . . . . . . . . 10 |
8 | 7 | abbii 2286 | . . . . . . . . 9 |
9 | 6, 8 | opeq12i 3770 | . . . . . . . 8 |
10 | 3, 9 | eqtri 2191 | . . . . . . 7 |
11 | 10 | oveq1i 5863 | . . . . . 6 |
12 | 11 | opeq1i 3768 | . . . . 5 |
13 | eceq1 6548 | . . . . 5 | |
14 | 12, 13 | ax-mp 5 | . . . 4 |
15 | 2, 14 | eqtri 2191 | . . 3 |
16 | 15 | opeq1i 3768 | . 2 |
17 | 1, 16 | eqtr2i 2192 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 cab 2156 cop 3586 class class class wbr 3989 (class class class)co 5853 c1o 6388 cec 6511 ceq 7241 c1q 7243 cltq 7247 c1p 7254 cpp 7255 cer 7258 c0r 7260 c1r 7261 c1 7775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fv 5206 df-ov 5856 df-ec 6515 df-1nqqs 7313 df-i1p 7429 df-1r 7694 df-1 7782 |
This theorem is referenced by: pitonn 7810 |
Copyright terms: Public domain | W3C validator |