Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pitonnlem1 | Unicode version |
Description: Lemma for pitonn 7751. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.) |
Ref | Expression |
---|---|
pitonnlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1 7723 | . 2 | |
2 | df-1r 7635 | . . . 4 | |
3 | df-i1p 7370 | . . . . . . . 8 | |
4 | df-1nqqs 7254 | . . . . . . . . . . 11 | |
5 | 4 | breq2i 3973 | . . . . . . . . . 10 |
6 | 5 | abbii 2273 | . . . . . . . . 9 |
7 | 4 | breq1i 3972 | . . . . . . . . . 10 |
8 | 7 | abbii 2273 | . . . . . . . . 9 |
9 | 6, 8 | opeq12i 3746 | . . . . . . . 8 |
10 | 3, 9 | eqtri 2178 | . . . . . . 7 |
11 | 10 | oveq1i 5828 | . . . . . 6 |
12 | 11 | opeq1i 3744 | . . . . 5 |
13 | eceq1 6508 | . . . . 5 | |
14 | 12, 13 | ax-mp 5 | . . . 4 |
15 | 2, 14 | eqtri 2178 | . . 3 |
16 | 15 | opeq1i 3744 | . 2 |
17 | 1, 16 | eqtr2i 2179 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 cab 2143 cop 3563 class class class wbr 3965 (class class class)co 5818 c1o 6350 cec 6471 ceq 7182 c1q 7184 cltq 7188 c1p 7195 cpp 7196 cer 7199 c0r 7201 c1r 7202 c1 7716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4589 df-cnv 4591 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fv 5175 df-ov 5821 df-ec 6475 df-1nqqs 7254 df-i1p 7370 df-1r 7635 df-1 7723 |
This theorem is referenced by: pitonn 7751 |
Copyright terms: Public domain | W3C validator |