| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pitonnlem1 | Unicode version | ||
| Description: Lemma for pitonn 7932. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.) |
| Ref | Expression |
|---|---|
| pitonnlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1 7904 |
. 2
| |
| 2 | df-1r 7816 |
. . . 4
| |
| 3 | df-i1p 7551 |
. . . . . . . 8
| |
| 4 | df-1nqqs 7435 |
. . . . . . . . . . 11
| |
| 5 | 4 | breq2i 4042 |
. . . . . . . . . 10
|
| 6 | 5 | abbii 2312 |
. . . . . . . . 9
|
| 7 | 4 | breq1i 4041 |
. . . . . . . . . 10
|
| 8 | 7 | abbii 2312 |
. . . . . . . . 9
|
| 9 | 6, 8 | opeq12i 3814 |
. . . . . . . 8
|
| 10 | 3, 9 | eqtri 2217 |
. . . . . . 7
|
| 11 | 10 | oveq1i 5935 |
. . . . . 6
|
| 12 | 11 | opeq1i 3812 |
. . . . 5
|
| 13 | eceq1 6636 |
. . . . 5
| |
| 14 | 12, 13 | ax-mp 5 |
. . . 4
|
| 15 | 2, 14 | eqtri 2217 |
. . 3
|
| 16 | 15 | opeq1i 3812 |
. 2
|
| 17 | 1, 16 | eqtr2i 2218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fv 5267 df-ov 5928 df-ec 6603 df-1nqqs 7435 df-i1p 7551 df-1r 7816 df-1 7904 |
| This theorem is referenced by: pitonn 7932 |
| Copyright terms: Public domain | W3C validator |