ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem1 Unicode version

Theorem pitonnlem1 7748
Description: Lemma for pitonn 7751. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem1  |-  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
Distinct variable group:    u, l

Proof of Theorem pitonnlem1
StepHypRef Expression
1 df-1 7723 . 2  |-  1  =  <. 1R ,  0R >.
2 df-1r 7635 . . . 4  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
3 df-i1p 7370 . . . . . . . 8  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
4 df-1nqqs 7254 . . . . . . . . . . 11  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
54breq2i 3973 . . . . . . . . . 10  |-  ( l 
<Q  1Q  <->  l  <Q  [ <. 1o ,  1o >. ]  ~Q  )
65abbii 2273 . . . . . . . . 9  |-  { l  |  l  <Q  1Q }  =  { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  }
74breq1i 3972 . . . . . . . . . 10  |-  ( 1Q 
<Q  u  <->  [ <. 1o ,  1o >. ]  ~Q  <Q  u
)
87abbii 2273 . . . . . . . . 9  |-  { u  |  1Q  <Q  u }  =  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u }
96, 8opeq12i 3746 . . . . . . . 8  |-  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.
103, 9eqtri 2178 . . . . . . 7  |-  1P  =  <. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.
1110oveq1i 5828 . . . . . 6  |-  ( 1P 
+P.  1P )  =  (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
1211opeq1i 3744 . . . . 5  |-  <. ( 1P  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.
13 eceq1 6508 . . . . 5  |-  ( <.
( 1P  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  ->  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1412, 13ax-mp 5 . . . 4  |-  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R
152, 14eqtri 2178 . . 3  |-  1R  =  [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R
1615opeq1i 3744 . 2  |-  <. 1R ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.
171, 16eqtr2i 2179 1  |-  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
Colors of variables: wff set class
Syntax hints:    = wceq 1335   {cab 2143   <.cop 3563   class class class wbr 3965  (class class class)co 5818   1oc1o 6350   [cec 6471    ~Q ceq 7182   1Qc1q 7184    <Q cltq 7188   1Pc1p 7195    +P. cpp 7196    ~R cer 7199   0Rc0r 7201   1Rc1r 7202   1c1 7716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4589  df-cnv 4591  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fv 5175  df-ov 5821  df-ec 6475  df-1nqqs 7254  df-i1p 7370  df-1r 7635  df-1 7723
This theorem is referenced by:  pitonn  7751
  Copyright terms: Public domain W3C validator