| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pitonnlem1 | Unicode version | ||
| Description: Lemma for pitonn 7996. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.) |
| Ref | Expression |
|---|---|
| pitonnlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1 7968 |
. 2
| |
| 2 | df-1r 7880 |
. . . 4
| |
| 3 | df-i1p 7615 |
. . . . . . . 8
| |
| 4 | df-1nqqs 7499 |
. . . . . . . . . . 11
| |
| 5 | 4 | breq2i 4067 |
. . . . . . . . . 10
|
| 6 | 5 | abbii 2323 |
. . . . . . . . 9
|
| 7 | 4 | breq1i 4066 |
. . . . . . . . . 10
|
| 8 | 7 | abbii 2323 |
. . . . . . . . 9
|
| 9 | 6, 8 | opeq12i 3838 |
. . . . . . . 8
|
| 10 | 3, 9 | eqtri 2228 |
. . . . . . 7
|
| 11 | 10 | oveq1i 5977 |
. . . . . 6
|
| 12 | 11 | opeq1i 3836 |
. . . . 5
|
| 13 | eceq1 6678 |
. . . . 5
| |
| 14 | 12, 13 | ax-mp 5 |
. . . 4
|
| 15 | 2, 14 | eqtri 2228 |
. . 3
|
| 16 | 15 | opeq1i 3836 |
. 2
|
| 17 | 1, 16 | eqtr2i 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fv 5298 df-ov 5970 df-ec 6645 df-1nqqs 7499 df-i1p 7615 df-1r 7880 df-1 7968 |
| This theorem is referenced by: pitonn 7996 |
| Copyright terms: Public domain | W3C validator |