ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem1 Unicode version

Theorem pitonnlem1 7905
Description: Lemma for pitonn 7908. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem1  |-  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
Distinct variable group:    u, l

Proof of Theorem pitonnlem1
StepHypRef Expression
1 df-1 7880 . 2  |-  1  =  <. 1R ,  0R >.
2 df-1r 7792 . . . 4  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
3 df-i1p 7527 . . . . . . . 8  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
4 df-1nqqs 7411 . . . . . . . . . . 11  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
54breq2i 4037 . . . . . . . . . 10  |-  ( l 
<Q  1Q  <->  l  <Q  [ <. 1o ,  1o >. ]  ~Q  )
65abbii 2309 . . . . . . . . 9  |-  { l  |  l  <Q  1Q }  =  { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  }
74breq1i 4036 . . . . . . . . . 10  |-  ( 1Q 
<Q  u  <->  [ <. 1o ,  1o >. ]  ~Q  <Q  u
)
87abbii 2309 . . . . . . . . 9  |-  { u  |  1Q  <Q  u }  =  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u }
96, 8opeq12i 3809 . . . . . . . 8  |-  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.
103, 9eqtri 2214 . . . . . . 7  |-  1P  =  <. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.
1110oveq1i 5928 . . . . . 6  |-  ( 1P 
+P.  1P )  =  (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
1211opeq1i 3807 . . . . 5  |-  <. ( 1P  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.
13 eceq1 6622 . . . . 5  |-  ( <.
( 1P  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  ->  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1412, 13ax-mp 5 . . . 4  |-  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R
152, 14eqtri 2214 . . 3  |-  1R  =  [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R
1615opeq1i 3807 . 2  |-  <. 1R ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.
171, 16eqtr2i 2215 1  |-  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
Colors of variables: wff set class
Syntax hints:    = wceq 1364   {cab 2179   <.cop 3621   class class class wbr 4029  (class class class)co 5918   1oc1o 6462   [cec 6585    ~Q ceq 7339   1Qc1q 7341    <Q cltq 7345   1Pc1p 7352    +P. cpp 7353    ~R cer 7356   0Rc0r 7358   1Rc1r 7359   1c1 7873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fv 5262  df-ov 5921  df-ec 6589  df-1nqqs 7411  df-i1p 7527  df-1r 7792  df-1 7880
This theorem is referenced by:  pitonn  7908
  Copyright terms: Public domain W3C validator