ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem1 Unicode version

Theorem pitonnlem1 7617
Description: Lemma for pitonn 7620. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem1  |-  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
Distinct variable group:    u, l

Proof of Theorem pitonnlem1
StepHypRef Expression
1 df-1 7592 . 2  |-  1  =  <. 1R ,  0R >.
2 df-1r 7504 . . . 4  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
3 df-i1p 7239 . . . . . . . 8  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
4 df-1nqqs 7123 . . . . . . . . . . 11  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
54breq2i 3905 . . . . . . . . . 10  |-  ( l 
<Q  1Q  <->  l  <Q  [ <. 1o ,  1o >. ]  ~Q  )
65abbii 2231 . . . . . . . . 9  |-  { l  |  l  <Q  1Q }  =  { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  }
74breq1i 3904 . . . . . . . . . 10  |-  ( 1Q 
<Q  u  <->  [ <. 1o ,  1o >. ]  ~Q  <Q  u
)
87abbii 2231 . . . . . . . . 9  |-  { u  |  1Q  <Q  u }  =  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u }
96, 8opeq12i 3678 . . . . . . . 8  |-  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.
103, 9eqtri 2136 . . . . . . 7  |-  1P  =  <. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.
1110oveq1i 5750 . . . . . 6  |-  ( 1P 
+P.  1P )  =  (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
1211opeq1i 3676 . . . . 5  |-  <. ( 1P  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.
13 eceq1 6430 . . . . 5  |-  ( <.
( 1P  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  ->  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1412, 13ax-mp 5 . . . 4  |-  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R
152, 14eqtri 2136 . . 3  |-  1R  =  [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R
1615opeq1i 3676 . 2  |-  <. 1R ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.
171, 16eqtr2i 2137 1  |-  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
Colors of variables: wff set class
Syntax hints:    = wceq 1314   {cab 2101   <.cop 3498   class class class wbr 3897  (class class class)co 5740   1oc1o 6272   [cec 6393    ~Q ceq 7051   1Qc1q 7053    <Q cltq 7057   1Pc1p 7064    +P. cpp 7065    ~R cer 7068   0Rc0r 7070   1Rc1r 7071   1c1 7585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-xp 4513  df-cnv 4515  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fv 5099  df-ov 5743  df-ec 6397  df-1nqqs 7123  df-i1p 7239  df-1r 7504  df-1 7592
This theorem is referenced by:  pitonn  7620
  Copyright terms: Public domain W3C validator