| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pitonnlem1 | Unicode version | ||
| Description: Lemma for pitonn 8035. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.) |
| Ref | Expression |
|---|---|
| pitonnlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1 8007 |
. 2
| |
| 2 | df-1r 7919 |
. . . 4
| |
| 3 | df-i1p 7654 |
. . . . . . . 8
| |
| 4 | df-1nqqs 7538 |
. . . . . . . . . . 11
| |
| 5 | 4 | breq2i 4091 |
. . . . . . . . . 10
|
| 6 | 5 | abbii 2345 |
. . . . . . . . 9
|
| 7 | 4 | breq1i 4090 |
. . . . . . . . . 10
|
| 8 | 7 | abbii 2345 |
. . . . . . . . 9
|
| 9 | 6, 8 | opeq12i 3862 |
. . . . . . . 8
|
| 10 | 3, 9 | eqtri 2250 |
. . . . . . 7
|
| 11 | 10 | oveq1i 6011 |
. . . . . 6
|
| 12 | 11 | opeq1i 3860 |
. . . . 5
|
| 13 | eceq1 6715 |
. . . . 5
| |
| 14 | 12, 13 | ax-mp 5 |
. . . 4
|
| 15 | 2, 14 | eqtri 2250 |
. . 3
|
| 16 | 15 | opeq1i 3860 |
. 2
|
| 17 | 1, 16 | eqtr2i 2251 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fv 5326 df-ov 6004 df-ec 6682 df-1nqqs 7538 df-i1p 7654 df-1r 7919 df-1 8007 |
| This theorem is referenced by: pitonn 8035 |
| Copyright terms: Public domain | W3C validator |