Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pitonnlem1 | Unicode version |
Description: Lemma for pitonn 7789. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.) |
Ref | Expression |
---|---|
pitonnlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1 7761 | . 2 | |
2 | df-1r 7673 | . . . 4 | |
3 | df-i1p 7408 | . . . . . . . 8 | |
4 | df-1nqqs 7292 | . . . . . . . . . . 11 | |
5 | 4 | breq2i 3990 | . . . . . . . . . 10 |
6 | 5 | abbii 2282 | . . . . . . . . 9 |
7 | 4 | breq1i 3989 | . . . . . . . . . 10 |
8 | 7 | abbii 2282 | . . . . . . . . 9 |
9 | 6, 8 | opeq12i 3763 | . . . . . . . 8 |
10 | 3, 9 | eqtri 2186 | . . . . . . 7 |
11 | 10 | oveq1i 5852 | . . . . . 6 |
12 | 11 | opeq1i 3761 | . . . . 5 |
13 | eceq1 6536 | . . . . 5 | |
14 | 12, 13 | ax-mp 5 | . . . 4 |
15 | 2, 14 | eqtri 2186 | . . 3 |
16 | 15 | opeq1i 3761 | . 2 |
17 | 1, 16 | eqtr2i 2187 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 cab 2151 cop 3579 class class class wbr 3982 (class class class)co 5842 c1o 6377 cec 6499 ceq 7220 c1q 7222 cltq 7226 c1p 7233 cpp 7234 cer 7237 c0r 7239 c1r 7240 c1 7754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fv 5196 df-ov 5845 df-ec 6503 df-1nqqs 7292 df-i1p 7408 df-1r 7673 df-1 7761 |
This theorem is referenced by: pitonn 7789 |
Copyright terms: Public domain | W3C validator |