ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq12i Unicode version

Theorem opeq12i 3779
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1  |-  A  =  B
opeq12i.2  |-  C  =  D
Assertion
Ref Expression
opeq12i  |-  <. A ,  C >.  =  <. B ,  D >.

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2  |-  A  =  B
2 opeq12i.2 . 2  |-  C  =  D
3 opeq12 3776 . 2  |-  ( ( A  =  B  /\  C  =  D )  -> 
<. A ,  C >.  = 
<. B ,  D >. )
41, 2, 3mp2an 426 1  |-  <. A ,  C >.  =  <. B ,  D >.
Colors of variables: wff set class
Syntax hints:    = wceq 1353   <.cop 3592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598
This theorem is referenced by:  addpinq1  7438  genipv  7483  ltexpri  7587  recexpr  7612  cauappcvgprlemladdru  7630  cauappcvgprlemladdrl  7631  cauappcvgpr  7636  caucvgprlemcl  7650  caucvgprlemladdrl  7652  caucvgpr  7656  caucvgprprlemval  7662  caucvgprprlemnbj  7667  caucvgprprlemmu  7669  caucvgprprlemclphr  7679  caucvgprprlemaddq  7682  caucvgprprlem1  7683  caucvgprprlem2  7684  caucvgsr  7776  pitonnlem1  7819  axi2m1  7849  axcaucvg  7874
  Copyright terms: Public domain W3C validator