| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12i | Unicode version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| opeq1i.1 |
|
| opeq12i.2 |
|
| Ref | Expression |
|---|---|
| opeq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 |
. 2
| |
| 2 | opeq12i.2 |
. 2
| |
| 3 | opeq12 3810 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 |
| This theorem is referenced by: addpinq1 7531 genipv 7576 ltexpri 7680 recexpr 7705 cauappcvgprlemladdru 7723 cauappcvgprlemladdrl 7724 cauappcvgpr 7729 caucvgprlemcl 7743 caucvgprlemladdrl 7745 caucvgpr 7749 caucvgprprlemval 7755 caucvgprprlemnbj 7760 caucvgprprlemmu 7762 caucvgprprlemclphr 7772 caucvgprprlemaddq 7775 caucvgprprlem1 7776 caucvgprprlem2 7777 caucvgsr 7869 pitonnlem1 7912 axi2m1 7942 axcaucvg 7967 |
| Copyright terms: Public domain | W3C validator |