![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq12i | Unicode version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
opeq1i.1 |
![]() ![]() ![]() ![]() |
opeq12i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opeq12i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | opeq12i.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | opeq12 3806 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2an 426 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 |
This theorem is referenced by: addpinq1 7524 genipv 7569 ltexpri 7673 recexpr 7698 cauappcvgprlemladdru 7716 cauappcvgprlemladdrl 7717 cauappcvgpr 7722 caucvgprlemcl 7736 caucvgprlemladdrl 7738 caucvgpr 7742 caucvgprprlemval 7748 caucvgprprlemnbj 7753 caucvgprprlemmu 7755 caucvgprprlemclphr 7765 caucvgprprlemaddq 7768 caucvgprprlem1 7769 caucvgprprlem2 7770 caucvgsr 7862 pitonnlem1 7905 axi2m1 7935 axcaucvg 7960 |
Copyright terms: Public domain | W3C validator |