![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq12i | Unicode version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
opeq1i.1 |
![]() ![]() ![]() ![]() |
opeq12i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opeq12i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | opeq12i.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | opeq12 3622 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2an 417 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-sn 3450 df-pr 3451 df-op 3453 |
This theorem is referenced by: addpinq1 7013 genipv 7058 ltexpri 7162 recexpr 7187 cauappcvgprlemladdru 7205 cauappcvgprlemladdrl 7206 cauappcvgpr 7211 caucvgprlemcl 7225 caucvgprlemladdrl 7227 caucvgpr 7231 caucvgprprlemval 7237 caucvgprprlemnbj 7242 caucvgprprlemmu 7244 caucvgprprlemclphr 7254 caucvgprprlemaddq 7257 caucvgprprlem1 7258 caucvgprprlem2 7259 caucvgsr 7337 pitonnlem1 7372 axi2m1 7400 axcaucvg 7425 |
Copyright terms: Public domain | W3C validator |