ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq12i Unicode version

Theorem opeq12i 3763
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1  |-  A  =  B
opeq12i.2  |-  C  =  D
Assertion
Ref Expression
opeq12i  |-  <. A ,  C >.  =  <. B ,  D >.

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2  |-  A  =  B
2 opeq12i.2 . 2  |-  C  =  D
3 opeq12 3760 . 2  |-  ( ( A  =  B  /\  C  =  D )  -> 
<. A ,  C >.  = 
<. B ,  D >. )
41, 2, 3mp2an 423 1  |-  <. A ,  C >.  =  <. B ,  D >.
Colors of variables: wff set class
Syntax hints:    = wceq 1343   <.cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585
This theorem is referenced by:  addpinq1  7405  genipv  7450  ltexpri  7554  recexpr  7579  cauappcvgprlemladdru  7597  cauappcvgprlemladdrl  7598  cauappcvgpr  7603  caucvgprlemcl  7617  caucvgprlemladdrl  7619  caucvgpr  7623  caucvgprprlemval  7629  caucvgprprlemnbj  7634  caucvgprprlemmu  7636  caucvgprprlemclphr  7646  caucvgprprlemaddq  7649  caucvgprprlem1  7650  caucvgprprlem2  7651  caucvgsr  7743  pitonnlem1  7786  axi2m1  7816  axcaucvg  7841
  Copyright terms: Public domain W3C validator