Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeq12i | Unicode version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
opeq1i.1 | |
opeq12i.2 |
Ref | Expression |
---|---|
opeq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 | |
2 | opeq12i.2 | . 2 | |
3 | opeq12 3760 | . 2 | |
4 | 1, 2, 3 | mp2an 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: addpinq1 7405 genipv 7450 ltexpri 7554 recexpr 7579 cauappcvgprlemladdru 7597 cauappcvgprlemladdrl 7598 cauappcvgpr 7603 caucvgprlemcl 7617 caucvgprlemladdrl 7619 caucvgpr 7623 caucvgprprlemval 7629 caucvgprprlemnbj 7634 caucvgprprlemmu 7636 caucvgprprlemclphr 7646 caucvgprprlemaddq 7649 caucvgprprlem1 7650 caucvgprprlem2 7651 caucvgsr 7743 pitonnlem1 7786 axi2m1 7816 axcaucvg 7841 |
Copyright terms: Public domain | W3C validator |