ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq12i Unicode version

Theorem opeq12i 3824
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1  |-  A  =  B
opeq12i.2  |-  C  =  D
Assertion
Ref Expression
opeq12i  |-  <. A ,  C >.  =  <. B ,  D >.

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2  |-  A  =  B
2 opeq12i.2 . 2  |-  C  =  D
3 opeq12 3821 . 2  |-  ( ( A  =  B  /\  C  =  D )  -> 
<. A ,  C >.  = 
<. B ,  D >. )
41, 2, 3mp2an 426 1  |-  <. A ,  C >.  =  <. B ,  D >.
Colors of variables: wff set class
Syntax hints:    = wceq 1373   <.cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642
This theorem is referenced by:  addpinq1  7577  genipv  7622  ltexpri  7726  recexpr  7751  cauappcvgprlemladdru  7769  cauappcvgprlemladdrl  7770  cauappcvgpr  7775  caucvgprlemcl  7789  caucvgprlemladdrl  7791  caucvgpr  7795  caucvgprprlemval  7801  caucvgprprlemnbj  7806  caucvgprprlemmu  7808  caucvgprprlemclphr  7818  caucvgprprlemaddq  7821  caucvgprprlem1  7822  caucvgprprlem2  7823  caucvgsr  7915  pitonnlem1  7958  axi2m1  7988  axcaucvg  8013
  Copyright terms: Public domain W3C validator