| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12i | Unicode version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| opeq1i.1 |
|
| opeq12i.2 |
|
| Ref | Expression |
|---|---|
| opeq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 |
. 2
| |
| 2 | opeq12i.2 |
. 2
| |
| 3 | opeq12 3821 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: addpinq1 7577 genipv 7622 ltexpri 7726 recexpr 7751 cauappcvgprlemladdru 7769 cauappcvgprlemladdrl 7770 cauappcvgpr 7775 caucvgprlemcl 7789 caucvgprlemladdrl 7791 caucvgpr 7795 caucvgprprlemval 7801 caucvgprprlemnbj 7806 caucvgprprlemmu 7808 caucvgprprlemclphr 7818 caucvgprprlemaddq 7821 caucvgprprlem1 7822 caucvgprprlem2 7823 caucvgsr 7915 pitonnlem1 7958 axi2m1 7988 axcaucvg 8013 |
| Copyright terms: Public domain | W3C validator |