| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12i | Unicode version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| opeq1i.1 |
|
| opeq12i.2 |
|
| Ref | Expression |
|---|---|
| opeq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 |
. 2
| |
| 2 | opeq12i.2 |
. 2
| |
| 3 | opeq12 3821 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: addpinq1 7579 genipv 7624 ltexpri 7728 recexpr 7753 cauappcvgprlemladdru 7771 cauappcvgprlemladdrl 7772 cauappcvgpr 7777 caucvgprlemcl 7791 caucvgprlemladdrl 7793 caucvgpr 7797 caucvgprprlemval 7803 caucvgprprlemnbj 7808 caucvgprprlemmu 7810 caucvgprprlemclphr 7820 caucvgprprlemaddq 7823 caucvgprprlem1 7824 caucvgprprlem2 7825 caucvgsr 7917 pitonnlem1 7960 axi2m1 7990 axcaucvg 8015 |
| Copyright terms: Public domain | W3C validator |