| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12i | Unicode version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| opeq1i.1 |
|
| opeq12i.2 |
|
| Ref | Expression |
|---|---|
| opeq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 |
. 2
| |
| 2 | opeq12i.2 |
. 2
| |
| 3 | opeq12 3859 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: addpinq1 7651 genipv 7696 ltexpri 7800 recexpr 7825 cauappcvgprlemladdru 7843 cauappcvgprlemladdrl 7844 cauappcvgpr 7849 caucvgprlemcl 7863 caucvgprlemladdrl 7865 caucvgpr 7869 caucvgprprlemval 7875 caucvgprprlemnbj 7880 caucvgprprlemmu 7882 caucvgprprlemclphr 7892 caucvgprprlemaddq 7895 caucvgprprlem1 7896 caucvgprprlem2 7897 caucvgsr 7989 pitonnlem1 8032 axi2m1 8062 axcaucvg 8087 |
| Copyright terms: Public domain | W3C validator |