| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12i | Unicode version | ||
| Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| opeq1i.1 |
|
| opeq12i.2 |
|
| Ref | Expression |
|---|---|
| opeq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1i.1 |
. 2
| |
| 2 | opeq12i.2 |
. 2
| |
| 3 | opeq12 3835 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 |
| This theorem is referenced by: addpinq1 7612 genipv 7657 ltexpri 7761 recexpr 7786 cauappcvgprlemladdru 7804 cauappcvgprlemladdrl 7805 cauappcvgpr 7810 caucvgprlemcl 7824 caucvgprlemladdrl 7826 caucvgpr 7830 caucvgprprlemval 7836 caucvgprprlemnbj 7841 caucvgprprlemmu 7843 caucvgprprlemclphr 7853 caucvgprprlemaddq 7856 caucvgprprlem1 7857 caucvgprprlem2 7858 caucvgsr 7950 pitonnlem1 7993 axi2m1 8023 axcaucvg 8048 |
| Copyright terms: Public domain | W3C validator |