ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprlu Unicode version

Theorem nqprlu 7642
Description: The canonical embedding of the rationals into the reals. (Contributed by Jim Kingdon, 24-Jun-2020.)
Assertion
Ref Expression
nqprlu  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
Distinct variable groups:    A, l    u, A

Proof of Theorem nqprlu
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 breq2 4047 . . . . 5  |-  ( l  =  a  ->  ( A  <Q  l  <->  A  <Q  a ) )
21cbvabv 2329 . . . 4  |-  { l  |  A  <Q  l }  =  { a  |  A  <Q  a }
3 breq2 4047 . . . . 5  |-  ( u  =  a  ->  ( A  <Q  u  <->  A  <Q  a ) )
43cbvabv 2329 . . . 4  |-  { u  |  A  <Q  u }  =  { a  |  A  <Q  a }
52, 4eqtr4i 2228 . . 3  |-  { l  |  A  <Q  l }  =  { u  |  A  <Q  u }
65opeq2i 3822 . 2  |-  <. { l  |  l  <Q  A } ,  { l  |  A  <Q  l } >.  =  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.
7 nqprxx 7641 . 2  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { l  |  A  <Q  l } >.  e.  P. )
86, 7eqeltrrid 2292 1  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   {cab 2190   <.cop 3635   class class class wbr 4043   Q.cnq 7375    <Q cltq 7380   P.cnp 7386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-inp 7561
This theorem is referenced by:  recnnpr  7643  nqprl  7646  nqpru  7647  nnprlu  7648  1pr  7649  addnqprlemrl  7652  addnqprlemru  7653  addnqprlemfl  7654  addnqprlemfu  7655  addnqpr  7656  mulnqprlemrl  7668  mulnqprlemru  7669  mulnqprlemfl  7670  mulnqprlemfu  7671  mulnqpr  7672  ltnqpr  7688  ltnqpri  7689  prplnqu  7715  caucvgprlemcanl  7739  cauappcvgprlemladdfu  7749  cauappcvgprlemladdfl  7750  cauappcvgprlemladdru  7751  cauappcvgprlemladdrl  7752  cauappcvgprlemladd  7753  cauappcvgprlem1  7754  cauappcvgprlem2  7755  caucvgprlemladdfu  7772  caucvgprlemladdrl  7773  caucvgprlem1  7774  caucvgprlem2  7775  caucvgprprlemnkltj  7784  caucvgprprlemnkeqj  7785  caucvgprprlemmu  7790  caucvgprprlemopu  7794  caucvgprprlemloc  7798  caucvgprprlemexbt  7801  caucvgprprlem1  7804  caucvgprprlem2  7805  suplocexprlemloc  7816  ltrennb  7949
  Copyright terms: Public domain W3C validator