Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeqpr | GIF version |
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) |
Ref | Expression |
---|---|
opeqpr.1 | ⊢ 𝐴 ∈ V |
opeqpr.2 | ⊢ 𝐵 ∈ V |
opeqpr.3 | ⊢ 𝐶 ∈ V |
opeqpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
opeqpr | ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2167 | . 2 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ {𝐶, 𝐷} = 〈𝐴, 𝐵〉) | |
2 | opeqpr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | opeqpr.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | dfop 3757 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
5 | 4 | eqeq2i 2176 | . 2 ⊢ ({𝐶, 𝐷} = 〈𝐴, 𝐵〉 ↔ {𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}}) |
6 | opeqpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
7 | opeqpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
8 | 2 | snex 4164 | . . 3 ⊢ {𝐴} ∈ V |
9 | prexg 4189 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
10 | 2, 3, 9 | mp2an 423 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
11 | 6, 7, 8, 10 | preq12b 3750 | . 2 ⊢ ({𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
12 | 1, 5, 11 | 3bitri 205 | 1 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 Vcvv 2726 {csn 3576 {cpr 3577 〈cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: relop 4754 |
Copyright terms: Public domain | W3C validator |