| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeqpr | GIF version | ||
| Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) |
| Ref | Expression |
|---|---|
| opeqpr.1 | ⊢ 𝐴 ∈ V |
| opeqpr.2 | ⊢ 𝐵 ∈ V |
| opeqpr.3 | ⊢ 𝐶 ∈ V |
| opeqpr.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| opeqpr | ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2207 | . 2 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ {𝐶, 𝐷} = 〈𝐴, 𝐵〉) | |
| 2 | opeqpr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | opeqpr.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | dfop 3818 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 5 | 4 | eqeq2i 2216 | . 2 ⊢ ({𝐶, 𝐷} = 〈𝐴, 𝐵〉 ↔ {𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}}) |
| 6 | opeqpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 7 | opeqpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
| 8 | 2 | snex 4229 | . . 3 ⊢ {𝐴} ∈ V |
| 9 | prexg 4255 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 10 | 2, 3, 9 | mp2an 426 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
| 11 | 6, 7, 8, 10 | preq12b 3811 | . 2 ⊢ ({𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
| 12 | 1, 5, 11 | 3bitri 206 | 1 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2176 Vcvv 2772 {csn 3633 {cpr 3634 〈cop 3636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: relop 4828 |
| Copyright terms: Public domain | W3C validator |