ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeqpr GIF version

Theorem opeqpr 4340
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
opeqpr.1 𝐴 ∈ V
opeqpr.2 𝐵 ∈ V
opeqpr.3 𝐶 ∈ V
opeqpr.4 𝐷 ∈ V
Assertion
Ref Expression
opeqpr (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))

Proof of Theorem opeqpr
StepHypRef Expression
1 eqcom 2231 . 2 (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ {𝐶, 𝐷} = ⟨𝐴, 𝐵⟩)
2 opeqpr.1 . . . 4 𝐴 ∈ V
3 opeqpr.2 . . . 4 𝐵 ∈ V
42, 3dfop 3856 . . 3 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
54eqeq2i 2240 . 2 ({𝐶, 𝐷} = ⟨𝐴, 𝐵⟩ ↔ {𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}})
6 opeqpr.3 . . 3 𝐶 ∈ V
7 opeqpr.4 . . 3 𝐷 ∈ V
82snex 4269 . . 3 {𝐴} ∈ V
9 prexg 4295 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
102, 3, 9mp2an 426 . . 3 {𝐴, 𝐵} ∈ V
116, 7, 8, 10preq12b 3848 . 2 ({𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))
121, 5, 113bitri 206 1 (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  {cpr 3667  cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  relop  4872
  Copyright terms: Public domain W3C validator