ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringprop Unicode version

Theorem ringprop 13606
Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
ringprop.b  |-  ( Base `  K )  =  (
Base `  L )
ringprop.p  |-  ( +g  `  K )  =  ( +g  `  L )
ringprop.m  |-  ( .r
`  K )  =  ( .r `  L
)
Assertion
Ref Expression
ringprop  |-  ( K  e.  Ring  <->  L  e.  Ring )

Proof of Theorem ringprop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  K ) )
2 ringprop.b . . . 4  |-  ( Base `  K )  =  (
Base `  L )
32a1i 9 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  L ) )
4 ringprop.p . . . . 5  |-  ( +g  `  K )  =  ( +g  `  L )
54oveqi 5936 . . . 4  |-  ( x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y )
65a1i 9 . . 3  |-  ( ( T.  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
7 ringprop.m . . . . 5  |-  ( .r
`  K )  =  ( .r `  L
)
87oveqi 5936 . . . 4  |-  ( x ( .r `  K
) y )  =  ( x ( .r
`  L ) y )
98a1i 9 . . 3  |-  ( ( T.  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )
101, 3, 6, 9ringpropd 13604 . 2  |-  ( T. 
->  ( K  e.  Ring  <->  L  e.  Ring ) )
1110mptru 1373 1  |-  ( K  e.  Ring  <->  L  e.  Ring )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2167   ` cfv 5259  (class class class)co 5923   Basecbs 12688   +g cplusg 12765   .rcmulr 12766   Ringcrg 13562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-pre-ltirr 7993  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-ltxr 8068  df-inn 8993  df-2 9051  df-3 9052  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-plusg 12778  df-mulr 12779  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-grp 13145  df-mgp 13487  df-ring 13564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator