ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringprop Unicode version

Theorem ringprop 13539
Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
ringprop.b  |-  ( Base `  K )  =  (
Base `  L )
ringprop.p  |-  ( +g  `  K )  =  ( +g  `  L )
ringprop.m  |-  ( .r
`  K )  =  ( .r `  L
)
Assertion
Ref Expression
ringprop  |-  ( K  e.  Ring  <->  L  e.  Ring )

Proof of Theorem ringprop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2194 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  K ) )
2 ringprop.b . . . 4  |-  ( Base `  K )  =  (
Base `  L )
32a1i 9 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  L ) )
4 ringprop.p . . . . 5  |-  ( +g  `  K )  =  ( +g  `  L )
54oveqi 5932 . . . 4  |-  ( x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y )
65a1i 9 . . 3  |-  ( ( T.  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
7 ringprop.m . . . . 5  |-  ( .r
`  K )  =  ( .r `  L
)
87oveqi 5932 . . . 4  |-  ( x ( .r `  K
) y )  =  ( x ( .r
`  L ) y )
98a1i 9 . . 3  |-  ( ( T.  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )
101, 3, 6, 9ringpropd 13537 . 2  |-  ( T. 
->  ( K  e.  Ring  <->  L  e.  Ring ) )
1110mptru 1373 1  |-  ( K  e.  Ring  <->  L  e.  Ring )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2164   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   Ringcrg 13495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-mgp 13420  df-ring 13497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator