ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blres Unicode version

Theorem blres 15021
Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blres.2  |-  C  =  ( D  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
blres  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( P (
ball `  C ) R )  =  ( ( P ( ball `  D ) R )  i^i  Y ) )

Proof of Theorem blres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elinel2 3368 . . . . . . . . 9  |-  ( P  e.  ( X  i^i  Y )  ->  P  e.  Y )
2 blres.2 . . . . . . . . . . 11  |-  C  =  ( D  |`  ( Y  X.  Y ) )
32oveqi 5980 . . . . . . . . . 10  |-  ( P C x )  =  ( P ( D  |`  ( Y  X.  Y
) ) x )
4 ovres 6109 . . . . . . . . . 10  |-  ( ( P  e.  Y  /\  x  e.  Y )  ->  ( P ( D  |`  ( Y  X.  Y
) ) x )  =  ( P D x ) )
53, 4eqtrid 2252 . . . . . . . . 9  |-  ( ( P  e.  Y  /\  x  e.  Y )  ->  ( P C x )  =  ( P D x ) )
61, 5sylan 283 . . . . . . . 8  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( P C x )  =  ( P D x ) )
76breq1d 4069 . . . . . . 7  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( ( P C x )  <  R  <->  ( P D x )  <  R ) )
87anbi2d 464 . . . . . 6  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( ( x  e.  X  /\  ( P C x )  < 
R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
98pm5.32da 452 . . . . 5  |-  ( P  e.  ( X  i^i  Y )  ->  ( (
x  e.  Y  /\  ( x  e.  X  /\  ( P C x )  <  R ) )  <->  ( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  < 
R ) ) ) )
1093ad2ant2 1022 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) )  <-> 
( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  <  R ) ) ) )
11 elin 3364 . . . . . . 7  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  X  /\  x  e.  Y ) )
12 ancom 266 . . . . . . 7  |-  ( ( x  e.  X  /\  x  e.  Y )  <->  ( x  e.  Y  /\  x  e.  X )
)
1311, 12bitri 184 . . . . . 6  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  Y  /\  x  e.  X ) )
1413anbi1i 458 . . . . 5  |-  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R )  <->  ( (
x  e.  Y  /\  x  e.  X )  /\  ( P C x )  <  R ) )
15 anass 401 . . . . 5  |-  ( ( ( x  e.  Y  /\  x  e.  X
)  /\  ( P C x )  < 
R )  <->  ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) ) )
1614, 15bitri 184 . . . 4  |-  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R )  <->  ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) ) )
17 ancom 266 . . . 4  |-  ( ( ( x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y
)  <->  ( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1810, 16, 173bitr4g 223 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  < 
R )  <->  ( (
x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y )
) )
19 xmetres 14969 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y ) ) )
202, 19eqeltrid 2294 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  C  e.  ( *Met `  ( X  i^i  Y ) ) )
21 elbl 14978 . . . 4  |-  ( ( C  e.  ( *Met `  ( X  i^i  Y ) )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R
) ) )
2220, 21syl3an1 1283 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R
) ) )
23 elin 3364 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i 
Y )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  Y
) )
24 elinel1 3367 . . . . . 6  |-  ( P  e.  ( X  i^i  Y )  ->  P  e.  X )
25 elbl 14978 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
2624, 25syl3an2 1284 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D ) R )  <-> 
( x  e.  X  /\  ( P D x )  <  R ) ) )
2726anbi1d 465 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  Y )  <->  ( (
x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y )
) )
2823, 27bitrid 192 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( ( P (
ball `  D ) R )  i^i  Y
)  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  x  e.  Y ) ) )
2918, 22, 283bitr4d 220 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
x  e.  ( ( P ( ball `  D
) R )  i^i 
Y ) ) )
3029eqrdv 2205 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( P (
ball `  C ) R )  =  ( ( P ( ball `  D ) R )  i^i  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178    i^i cin 3173   class class class wbr 4059    X. cxp 4691    |` cres 4695   ` cfv 5290  (class class class)co 5967   RR*cxr 8141    < clt 8142   *Metcxmet 14413   ballcbl 14415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-psmet 14420  df-xmet 14421  df-bl 14423
This theorem is referenced by:  metrest  15093
  Copyright terms: Public domain W3C validator