| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > blres | Unicode version | ||
| Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.) |
| Ref | Expression |
|---|---|
| blres.2 |
|
| Ref | Expression |
|---|---|
| blres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 3391 |
. . . . . . . . 9
| |
| 2 | blres.2 |
. . . . . . . . . . 11
| |
| 3 | 2 | oveqi 6014 |
. . . . . . . . . 10
|
| 4 | ovres 6145 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | eqtrid 2274 |
. . . . . . . . 9
|
| 6 | 1, 5 | sylan 283 |
. . . . . . . 8
|
| 7 | 6 | breq1d 4093 |
. . . . . . 7
|
| 8 | 7 | anbi2d 464 |
. . . . . 6
|
| 9 | 8 | pm5.32da 452 |
. . . . 5
|
| 10 | 9 | 3ad2ant2 1043 |
. . . 4
|
| 11 | elin 3387 |
. . . . . . 7
| |
| 12 | ancom 266 |
. . . . . . 7
| |
| 13 | 11, 12 | bitri 184 |
. . . . . 6
|
| 14 | 13 | anbi1i 458 |
. . . . 5
|
| 15 | anass 401 |
. . . . 5
| |
| 16 | 14, 15 | bitri 184 |
. . . 4
|
| 17 | ancom 266 |
. . . 4
| |
| 18 | 10, 16, 17 | 3bitr4g 223 |
. . 3
|
| 19 | xmetres 15056 |
. . . . 5
| |
| 20 | 2, 19 | eqeltrid 2316 |
. . . 4
|
| 21 | elbl 15065 |
. . . 4
| |
| 22 | 20, 21 | syl3an1 1304 |
. . 3
|
| 23 | elin 3387 |
. . . 4
| |
| 24 | elinel1 3390 |
. . . . . 6
| |
| 25 | elbl 15065 |
. . . . . 6
| |
| 26 | 24, 25 | syl3an2 1305 |
. . . . 5
|
| 27 | 26 | anbi1d 465 |
. . . 4
|
| 28 | 23, 27 | bitrid 192 |
. . 3
|
| 29 | 18, 22, 28 | 3bitr4d 220 |
. 2
|
| 30 | 29 | eqrdv 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-pnf 8183 df-mnf 8184 df-xr 8185 df-psmet 14507 df-xmet 14508 df-bl 14510 |
| This theorem is referenced by: metrest 15180 |
| Copyright terms: Public domain | W3C validator |