ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blres Unicode version

Theorem blres 13973
Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blres.2  |-  C  =  ( D  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
blres  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( P (
ball `  C ) R )  =  ( ( P ( ball `  D ) R )  i^i  Y ) )

Proof of Theorem blres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elinel2 3324 . . . . . . . . 9  |-  ( P  e.  ( X  i^i  Y )  ->  P  e.  Y )
2 blres.2 . . . . . . . . . . 11  |-  C  =  ( D  |`  ( Y  X.  Y ) )
32oveqi 5890 . . . . . . . . . 10  |-  ( P C x )  =  ( P ( D  |`  ( Y  X.  Y
) ) x )
4 ovres 6016 . . . . . . . . . 10  |-  ( ( P  e.  Y  /\  x  e.  Y )  ->  ( P ( D  |`  ( Y  X.  Y
) ) x )  =  ( P D x ) )
53, 4eqtrid 2222 . . . . . . . . 9  |-  ( ( P  e.  Y  /\  x  e.  Y )  ->  ( P C x )  =  ( P D x ) )
61, 5sylan 283 . . . . . . . 8  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( P C x )  =  ( P D x ) )
76breq1d 4015 . . . . . . 7  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( ( P C x )  <  R  <->  ( P D x )  <  R ) )
87anbi2d 464 . . . . . 6  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( ( x  e.  X  /\  ( P C x )  < 
R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
98pm5.32da 452 . . . . 5  |-  ( P  e.  ( X  i^i  Y )  ->  ( (
x  e.  Y  /\  ( x  e.  X  /\  ( P C x )  <  R ) )  <->  ( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  < 
R ) ) ) )
1093ad2ant2 1019 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) )  <-> 
( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  <  R ) ) ) )
11 elin 3320 . . . . . . 7  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  X  /\  x  e.  Y ) )
12 ancom 266 . . . . . . 7  |-  ( ( x  e.  X  /\  x  e.  Y )  <->  ( x  e.  Y  /\  x  e.  X )
)
1311, 12bitri 184 . . . . . 6  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  Y  /\  x  e.  X ) )
1413anbi1i 458 . . . . 5  |-  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R )  <->  ( (
x  e.  Y  /\  x  e.  X )  /\  ( P C x )  <  R ) )
15 anass 401 . . . . 5  |-  ( ( ( x  e.  Y  /\  x  e.  X
)  /\  ( P C x )  < 
R )  <->  ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) ) )
1614, 15bitri 184 . . . 4  |-  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R )  <->  ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) ) )
17 ancom 266 . . . 4  |-  ( ( ( x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y
)  <->  ( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1810, 16, 173bitr4g 223 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  < 
R )  <->  ( (
x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y )
) )
19 xmetres 13921 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y ) ) )
202, 19eqeltrid 2264 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  C  e.  ( *Met `  ( X  i^i  Y ) ) )
21 elbl 13930 . . . 4  |-  ( ( C  e.  ( *Met `  ( X  i^i  Y ) )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R
) ) )
2220, 21syl3an1 1271 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R
) ) )
23 elin 3320 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i 
Y )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  Y
) )
24 elinel1 3323 . . . . . 6  |-  ( P  e.  ( X  i^i  Y )  ->  P  e.  X )
25 elbl 13930 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
2624, 25syl3an2 1272 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D ) R )  <-> 
( x  e.  X  /\  ( P D x )  <  R ) ) )
2726anbi1d 465 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  Y )  <->  ( (
x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y )
) )
2823, 27bitrid 192 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( ( P (
ball `  D ) R )  i^i  Y
)  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  x  e.  Y ) ) )
2918, 22, 283bitr4d 220 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
x  e.  ( ( P ( ball `  D
) R )  i^i 
Y ) ) )
3029eqrdv 2175 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( P (
ball `  C ) R )  =  ( ( P ( ball `  D ) R )  i^i  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    i^i cin 3130   class class class wbr 4005    X. cxp 4626    |` cres 4630   ` cfv 5218  (class class class)co 5877   RR*cxr 7993    < clt 7994   *Metcxmet 13479   ballcbl 13481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-pnf 7996  df-mnf 7997  df-xr 7998  df-psmet 13486  df-xmet 13487  df-bl 13489
This theorem is referenced by:  metrest  14045
  Copyright terms: Public domain W3C validator