ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blres Unicode version

Theorem blres 14670
Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blres.2  |-  C  =  ( D  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
blres  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( P (
ball `  C ) R )  =  ( ( P ( ball `  D ) R )  i^i  Y ) )

Proof of Theorem blres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elinel2 3350 . . . . . . . . 9  |-  ( P  e.  ( X  i^i  Y )  ->  P  e.  Y )
2 blres.2 . . . . . . . . . . 11  |-  C  =  ( D  |`  ( Y  X.  Y ) )
32oveqi 5935 . . . . . . . . . 10  |-  ( P C x )  =  ( P ( D  |`  ( Y  X.  Y
) ) x )
4 ovres 6063 . . . . . . . . . 10  |-  ( ( P  e.  Y  /\  x  e.  Y )  ->  ( P ( D  |`  ( Y  X.  Y
) ) x )  =  ( P D x ) )
53, 4eqtrid 2241 . . . . . . . . 9  |-  ( ( P  e.  Y  /\  x  e.  Y )  ->  ( P C x )  =  ( P D x ) )
61, 5sylan 283 . . . . . . . 8  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( P C x )  =  ( P D x ) )
76breq1d 4043 . . . . . . 7  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( ( P C x )  <  R  <->  ( P D x )  <  R ) )
87anbi2d 464 . . . . . 6  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( ( x  e.  X  /\  ( P C x )  < 
R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
98pm5.32da 452 . . . . 5  |-  ( P  e.  ( X  i^i  Y )  ->  ( (
x  e.  Y  /\  ( x  e.  X  /\  ( P C x )  <  R ) )  <->  ( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  < 
R ) ) ) )
1093ad2ant2 1021 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) )  <-> 
( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  <  R ) ) ) )
11 elin 3346 . . . . . . 7  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  X  /\  x  e.  Y ) )
12 ancom 266 . . . . . . 7  |-  ( ( x  e.  X  /\  x  e.  Y )  <->  ( x  e.  Y  /\  x  e.  X )
)
1311, 12bitri 184 . . . . . 6  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  Y  /\  x  e.  X ) )
1413anbi1i 458 . . . . 5  |-  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R )  <->  ( (
x  e.  Y  /\  x  e.  X )  /\  ( P C x )  <  R ) )
15 anass 401 . . . . 5  |-  ( ( ( x  e.  Y  /\  x  e.  X
)  /\  ( P C x )  < 
R )  <->  ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) ) )
1614, 15bitri 184 . . . 4  |-  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R )  <->  ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) ) )
17 ancom 266 . . . 4  |-  ( ( ( x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y
)  <->  ( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1810, 16, 173bitr4g 223 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  < 
R )  <->  ( (
x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y )
) )
19 xmetres 14618 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y ) ) )
202, 19eqeltrid 2283 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  C  e.  ( *Met `  ( X  i^i  Y ) ) )
21 elbl 14627 . . . 4  |-  ( ( C  e.  ( *Met `  ( X  i^i  Y ) )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R
) ) )
2220, 21syl3an1 1282 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R
) ) )
23 elin 3346 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i 
Y )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  Y
) )
24 elinel1 3349 . . . . . 6  |-  ( P  e.  ( X  i^i  Y )  ->  P  e.  X )
25 elbl 14627 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
2624, 25syl3an2 1283 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D ) R )  <-> 
( x  e.  X  /\  ( P D x )  <  R ) ) )
2726anbi1d 465 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  Y )  <->  ( (
x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y )
) )
2823, 27bitrid 192 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( ( P (
ball `  D ) R )  i^i  Y
)  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  x  e.  Y ) ) )
2918, 22, 283bitr4d 220 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
x  e.  ( ( P ( ball `  D
) R )  i^i 
Y ) ) )
3029eqrdv 2194 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( P (
ball `  C ) R )  =  ( ( P ( ball `  D ) R )  i^i  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    i^i cin 3156   class class class wbr 4033    X. cxp 4661    |` cres 4665   ` cfv 5258  (class class class)co 5922   RR*cxr 8060    < clt 8061   *Metcxmet 14092   ballcbl 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-xr 8065  df-psmet 14099  df-xmet 14100  df-bl 14102
This theorem is referenced by:  metrest  14742
  Copyright terms: Public domain W3C validator