| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > blres | Unicode version | ||
| Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.) |
| Ref | Expression |
|---|---|
| blres.2 |
|
| Ref | Expression |
|---|---|
| blres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 3360 |
. . . . . . . . 9
| |
| 2 | blres.2 |
. . . . . . . . . . 11
| |
| 3 | 2 | oveqi 5957 |
. . . . . . . . . 10
|
| 4 | ovres 6086 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | eqtrid 2250 |
. . . . . . . . 9
|
| 6 | 1, 5 | sylan 283 |
. . . . . . . 8
|
| 7 | 6 | breq1d 4054 |
. . . . . . 7
|
| 8 | 7 | anbi2d 464 |
. . . . . 6
|
| 9 | 8 | pm5.32da 452 |
. . . . 5
|
| 10 | 9 | 3ad2ant2 1022 |
. . . 4
|
| 11 | elin 3356 |
. . . . . . 7
| |
| 12 | ancom 266 |
. . . . . . 7
| |
| 13 | 11, 12 | bitri 184 |
. . . . . 6
|
| 14 | 13 | anbi1i 458 |
. . . . 5
|
| 15 | anass 401 |
. . . . 5
| |
| 16 | 14, 15 | bitri 184 |
. . . 4
|
| 17 | ancom 266 |
. . . 4
| |
| 18 | 10, 16, 17 | 3bitr4g 223 |
. . 3
|
| 19 | xmetres 14854 |
. . . . 5
| |
| 20 | 2, 19 | eqeltrid 2292 |
. . . 4
|
| 21 | elbl 14863 |
. . . 4
| |
| 22 | 20, 21 | syl3an1 1283 |
. . 3
|
| 23 | elin 3356 |
. . . 4
| |
| 24 | elinel1 3359 |
. . . . . 6
| |
| 25 | elbl 14863 |
. . . . . 6
| |
| 26 | 24, 25 | syl3an2 1284 |
. . . . 5
|
| 27 | 26 | anbi1d 465 |
. . . 4
|
| 28 | 23, 27 | bitrid 192 |
. . 3
|
| 29 | 18, 22, 28 | 3bitr4d 220 |
. 2
|
| 30 | 29 | eqrdv 2203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-map 6737 df-pnf 8109 df-mnf 8110 df-xr 8111 df-psmet 14305 df-xmet 14306 df-bl 14308 |
| This theorem is referenced by: metrest 14978 |
| Copyright terms: Public domain | W3C validator |