Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > blres | Unicode version |
Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.) |
Ref | Expression |
---|---|
blres.2 |
Ref | Expression |
---|---|
blres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 3314 | . . . . . . . . 9 | |
2 | blres.2 | . . . . . . . . . . 11 | |
3 | 2 | oveqi 5863 | . . . . . . . . . 10 |
4 | ovres 5989 | . . . . . . . . . 10 | |
5 | 3, 4 | eqtrid 2215 | . . . . . . . . 9 |
6 | 1, 5 | sylan 281 | . . . . . . . 8 |
7 | 6 | breq1d 3997 | . . . . . . 7 |
8 | 7 | anbi2d 461 | . . . . . 6 |
9 | 8 | pm5.32da 449 | . . . . 5 |
10 | 9 | 3ad2ant2 1014 | . . . 4 |
11 | elin 3310 | . . . . . . 7 | |
12 | ancom 264 | . . . . . . 7 | |
13 | 11, 12 | bitri 183 | . . . . . 6 |
14 | 13 | anbi1i 455 | . . . . 5 |
15 | anass 399 | . . . . 5 | |
16 | 14, 15 | bitri 183 | . . . 4 |
17 | ancom 264 | . . . 4 | |
18 | 10, 16, 17 | 3bitr4g 222 | . . 3 |
19 | xmetres 13135 | . . . . 5 | |
20 | 2, 19 | eqeltrid 2257 | . . . 4 |
21 | elbl 13144 | . . . 4 | |
22 | 20, 21 | syl3an1 1266 | . . 3 |
23 | elin 3310 | . . . 4 | |
24 | elinel1 3313 | . . . . . 6 | |
25 | elbl 13144 | . . . . . 6 | |
26 | 24, 25 | syl3an2 1267 | . . . . 5 |
27 | 26 | anbi1d 462 | . . . 4 |
28 | 23, 27 | syl5bb 191 | . . 3 |
29 | 18, 22, 28 | 3bitr4d 219 | . 2 |
30 | 29 | eqrdv 2168 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 cin 3120 class class class wbr 3987 cxp 4607 cres 4611 cfv 5196 (class class class)co 5850 cxr 7940 clt 7941 cxmet 12733 cbl 12735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-map 6624 df-pnf 7943 df-mnf 7944 df-xr 7945 df-psmet 12740 df-xmet 12741 df-bl 12743 |
This theorem is referenced by: metrest 13259 |
Copyright terms: Public domain | W3C validator |