ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq Unicode version

Theorem oveq 5928
Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
oveq  |-  ( F  =  G  ->  ( A F B )  =  ( A G B ) )

Proof of Theorem oveq
StepHypRef Expression
1 fveq1 5557 . 2  |-  ( F  =  G  ->  ( F `  <. A ,  B >. )  =  ( G `  <. A ,  B >. ) )
2 df-ov 5925 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
3 df-ov 5925 . 2  |-  ( A G B )  =  ( G `  <. A ,  B >. )
41, 2, 33eqtr4g 2254 1  |-  ( F  =  G  ->  ( A F B )  =  ( A G B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cop 3625   ` cfv 5258  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  oveqi  5935  oveqd  5939  ovmpodf  6054  ovmpodv2  6056  mapxpen  6909  ismgm  13000  mgmsscl  13004  issgrp  13046  ismnddef  13059  grpissubg  13324  isrng  13490  islmod  13847  lmodfopne  13882  ispsmet  14559  ismet  14580  isxmet  14581
  Copyright terms: Public domain W3C validator