ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq Unicode version

Theorem oveq 5924
Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
oveq  |-  ( F  =  G  ->  ( A F B )  =  ( A G B ) )

Proof of Theorem oveq
StepHypRef Expression
1 fveq1 5553 . 2  |-  ( F  =  G  ->  ( F `  <. A ,  B >. )  =  ( G `  <. A ,  B >. ) )
2 df-ov 5921 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
3 df-ov 5921 . 2  |-  ( A G B )  =  ( G `  <. A ,  B >. )
41, 2, 33eqtr4g 2251 1  |-  ( F  =  G  ->  ( A F B )  =  ( A G B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cop 3621   ` cfv 5254  (class class class)co 5918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  oveqi  5931  oveqd  5935  ovmpodf  6050  ovmpodv2  6052  mapxpen  6904  ismgm  12940  mgmsscl  12944  issgrp  12986  ismnddef  12999  grpissubg  13264  isrng  13430  islmod  13787  lmodfopne  13822  ispsmet  14491  ismet  14512  isxmet  14513
  Copyright terms: Public domain W3C validator