ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq Unicode version

Theorem oveq 5929
Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
oveq  |-  ( F  =  G  ->  ( A F B )  =  ( A G B ) )

Proof of Theorem oveq
StepHypRef Expression
1 fveq1 5558 . 2  |-  ( F  =  G  ->  ( F `  <. A ,  B >. )  =  ( G `  <. A ,  B >. ) )
2 df-ov 5926 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
3 df-ov 5926 . 2  |-  ( A G B )  =  ( G `  <. A ,  B >. )
41, 2, 33eqtr4g 2254 1  |-  ( F  =  G  ->  ( A F B )  =  ( A G B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cop 3626   ` cfv 5259  (class class class)co 5923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5926
This theorem is referenced by:  oveqi  5936  oveqd  5940  ovmpodf  6055  ovmpodv2  6057  mapxpen  6910  ismgm  13010  mgmsscl  13014  issgrp  13056  ismnddef  13069  grpissubg  13334  isrng  13500  islmod  13857  lmodfopne  13892  ispsmet  14569  ismet  14590  isxmet  14591
  Copyright terms: Public domain W3C validator