ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndprop Unicode version

Theorem mndprop 12861
Description: If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
mndprop.b  |-  ( Base `  K )  =  (
Base `  L )
mndprop.p  |-  ( +g  `  K )  =  ( +g  `  L )
Assertion
Ref Expression
mndprop  |-  ( K  e.  Mnd  <->  L  e.  Mnd )

Proof of Theorem mndprop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2188 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  K ) )
2 mndprop.b . . . 4  |-  ( Base `  K )  =  (
Base `  L )
32a1i 9 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  L ) )
4 mndprop.p . . . . 5  |-  ( +g  `  K )  =  ( +g  `  L )
54oveqi 5901 . . . 4  |-  ( x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y )
65a1i 9 . . 3  |-  ( ( T.  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
71, 3, 6mndpropd 12860 . 2  |-  ( T. 
->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
87mptru 1372 1  |-  ( K  e.  Mnd  <->  L  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1363   T. wtru 1364    e. wcel 2158   ` cfv 5228  (class class class)co 5888   Basecbs 12475   +g cplusg 12550   Mndcmnd 12836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-ov 5891  df-inn 8933  df-2 8991  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-mgm 12793  df-sgrp 12826  df-mnd 12837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator