ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndprop Unicode version

Theorem mndprop 12868
Description: If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
mndprop.b  |-  ( Base `  K )  =  (
Base `  L )
mndprop.p  |-  ( +g  `  K )  =  ( +g  `  L )
Assertion
Ref Expression
mndprop  |-  ( K  e.  Mnd  <->  L  e.  Mnd )

Proof of Theorem mndprop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2190 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  K ) )
2 mndprop.b . . . 4  |-  ( Base `  K )  =  (
Base `  L )
32a1i 9 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  L ) )
4 mndprop.p . . . . 5  |-  ( +g  `  K )  =  ( +g  `  L )
54oveqi 5904 . . . 4  |-  ( x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y )
65a1i 9 . . 3  |-  ( ( T.  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
71, 3, 6mndpropd 12867 . 2  |-  ( T. 
->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
87mptru 1373 1  |-  ( K  e.  Mnd  <->  L  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2160   ` cfv 5231  (class class class)co 5891   Basecbs 12480   +g cplusg 12555   Mndcmnd 12843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-cnex 7920  ax-resscn 7921  ax-1re 7923  ax-addrcl 7926
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-iota 5193  df-fun 5233  df-fn 5234  df-fv 5239  df-ov 5894  df-inn 8938  df-2 8996  df-ndx 12483  df-slot 12484  df-base 12486  df-plusg 12568  df-mgm 12798  df-sgrp 12831  df-mnd 12844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator