ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmet Unicode version

Theorem cncfmet 13120
Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
cncfmet.1  |-  C  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
cncfmet.2  |-  D  =  ( ( abs  o.  -  )  |`  ( B  X.  B ) )
cncfmet.3  |-  J  =  ( MetOpen `  C )
cncfmet.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
cncfmet  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( J  Cn  K
) )

Proof of Theorem cncfmet
Dummy variables  w  f  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 523 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  A  C_  CC )
2 simprl 521 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  A )
3 simprr 522 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  A )
4 cncfmet.1 . . . . . . . . . . . . . . . 16  |-  C  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
54oveqi 5849 . . . . . . . . . . . . . . 15  |-  ( x C w )  =  ( x ( ( abs  o.  -  )  |`  ( A  X.  A
) ) w )
6 ovres 5972 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  /\  w  e.  A )  ->  ( x ( ( abs  o.  -  )  |`  ( A  X.  A
) ) w )  =  ( x ( abs  o.  -  )
w ) )
75, 6syl5eq 2209 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  w  e.  A )  ->  ( x C w )  =  ( x ( abs  o.  -  ) w ) )
87ad2ant2l 500 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x C w )  =  ( x ( abs  o.  -  )
w ) )
9 ssel2 3132 . . . . . . . . . . . . . 14  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  x  e.  CC )
10 ssel2 3132 . . . . . . . . . . . . . 14  |-  ( ( A  C_  CC  /\  w  e.  A )  ->  w  e.  CC )
11 eqid 2164 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1211cnmetdval 13070 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  w  e.  CC )  ->  ( x ( abs 
o.  -  ) w
)  =  ( abs `  ( x  -  w
) ) )
139, 10, 12syl2an 287 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x ( abs  o.  -  ) w )  =  ( abs `  (
x  -  w ) ) )
148, 13eqtrd 2197 . . . . . . . . . . . 12  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x C w )  =  ( abs `  (
x  -  w ) ) )
151, 2, 1, 3, 14syl22anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( x C w )  =  ( abs `  (
x  -  w ) ) )
1615breq1d 3986 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
x C w )  <  z  <->  ( abs `  ( x  -  w
) )  <  z
) )
17 ffvelrn 5612 . . . . . . . . . . . . . 14  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( f `  x
)  e.  B )
1817ad2ant2lr 502 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  x )  e.  B
)
19 ffvelrn 5612 . . . . . . . . . . . . . 14  |-  ( ( f : A --> B  /\  w  e.  A )  ->  ( f `  w
)  e.  B )
2019ad2ant2l 500 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  w )  e.  B
)
21 cncfmet.2 . . . . . . . . . . . . . . 15  |-  D  =  ( ( abs  o.  -  )  |`  ( B  X.  B ) )
2221oveqi 5849 . . . . . . . . . . . . . 14  |-  ( ( f `  x ) D ( f `  w ) )  =  ( ( f `  x ) ( ( abs  o.  -  )  |`  ( B  X.  B
) ) ( f `
 w ) )
23 ovres 5972 . . . . . . . . . . . . . 14  |-  ( ( ( f `  x
)  e.  B  /\  ( f `  w
)  e.  B )  ->  ( ( f `
 x ) ( ( abs  o.  -  )  |`  ( B  X.  B ) ) ( f `  w ) )  =  ( ( f `  x ) ( abs  o.  -  ) ( f `  w ) ) )
2422, 23syl5eq 2209 . . . . . . . . . . . . 13  |-  ( ( ( f `  x
)  e.  B  /\  ( f `  w
)  e.  B )  ->  ( ( f `
 x ) D ( f `  w
) )  =  ( ( f `  x
) ( abs  o.  -  ) ( f `
 w ) ) )
2518, 20, 24syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x ) D ( f `  w ) )  =  ( ( f `  x ) ( abs 
o.  -  ) (
f `  w )
) )
26 simpllr 524 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  B  C_  CC )
2726, 18sseldd 3138 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  x )  e.  CC )
2826, 20sseldd 3138 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  w )  e.  CC )
2911cnmetdval 13070 . . . . . . . . . . . . 13  |-  ( ( ( f `  x
)  e.  CC  /\  ( f `  w
)  e.  CC )  ->  ( ( f `
 x ) ( abs  o.  -  )
( f `  w
) )  =  ( abs `  ( ( f `  x )  -  ( f `  w ) ) ) )
3027, 28, 29syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x )
( abs  o.  -  )
( f `  w
) )  =  ( abs `  ( ( f `  x )  -  ( f `  w ) ) ) )
3125, 30eqtrd 2197 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x ) D ( f `  w ) )  =  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) ) )
3231breq1d 3986 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( f `  x
) D ( f `
 w ) )  <  y  <->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
) )
3316, 32imbi12d 233 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3433anassrs 398 . . . . . . . 8  |-  ( ( ( ( ( A 
C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  /\  w  e.  A
)  ->  ( (
( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3534ralbidva 2460 . . . . . . 7  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( A. w  e.  A  ( ( x C w )  <  z  ->  ( ( f `  x ) D ( f `  w ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3635rexbidv 2465 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( E. z  e.  RR+  A. w  e.  A  ( (
x C w )  <  z  ->  (
( f `  x
) D ( f `
 w ) )  <  y )  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3736ralbidv 2464 . . . . 5  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3837ralbidva 2460 . . . 4  |-  ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  <  z  ->  ( ( f `  x ) D ( f `  w ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3938pm5.32da 448 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y ) )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) ) )
40 cnxmet 13072 . . . . . 6  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
41 xmetres2 12920 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
4240, 41mpan 421 . . . . 5  |-  ( A 
C_  CC  ->  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  e.  ( *Met `  A
) )
434, 42eqeltrid 2251 . . . 4  |-  ( A 
C_  CC  ->  C  e.  ( *Met `  A ) )
44 xmetres2 12920 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( B  X.  B ) )  e.  ( *Met `  B ) )
4540, 44mpan 421 . . . . 5  |-  ( B 
C_  CC  ->  ( ( abs  o.  -  )  |`  ( B  X.  B
) )  e.  ( *Met `  B
) )
4621, 45eqeltrid 2251 . . . 4  |-  ( B 
C_  CC  ->  D  e.  ( *Met `  B ) )
47 cncfmet.3 . . . . 5  |-  J  =  ( MetOpen `  C )
48 cncfmet.4 . . . . 5  |-  K  =  ( MetOpen `  D )
4947, 48metcn 13055 . . . 4  |-  ( ( C  e.  ( *Met `  A )  /\  D  e.  ( *Met `  B
) )  ->  (
f  e.  ( J  Cn  K )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y ) ) ) )
5043, 46, 49syl2an 287 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( J  Cn  K )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y ) ) ) )
51 elcncf 13101 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( A
-cn-> B )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) ) )
5239, 50, 513bitr4rd 220 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( A
-cn-> B )  <->  f  e.  ( J  Cn  K
) ) )
5352eqrdv 2162 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( J  Cn  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443    C_ wss 3111   class class class wbr 3976    X. cxp 4596    |` cres 4600    o. ccom 4602   -->wf 5178   ` cfv 5182  (class class class)co 5836   CCcc 7742    < clt 7924    - cmin 8060   RR+crp 9580   abscabs 10925   *Metcxmet 12521   MetOpencmopn 12526    Cn ccn 12726   -cn->ccncf 13098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-map 6607  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-xneg 9699  df-xadd 9700  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-topgen 12513  df-psmet 12528  df-xmet 12529  df-met 12530  df-bl 12531  df-mopn 12532  df-top 12537  df-topon 12550  df-bases 12582  df-cn 12729  df-cnp 12730  df-cncf 13099
This theorem is referenced by:  cncfcncntop  13121
  Copyright terms: Public domain W3C validator