ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmet Unicode version

Theorem cncfmet 14982
Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
cncfmet.1  |-  C  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
cncfmet.2  |-  D  =  ( ( abs  o.  -  )  |`  ( B  X.  B ) )
cncfmet.3  |-  J  =  ( MetOpen `  C )
cncfmet.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
cncfmet  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( J  Cn  K
) )

Proof of Theorem cncfmet
Dummy variables  w  f  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  A  C_  CC )
2 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  A )
3 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  A )
4 cncfmet.1 . . . . . . . . . . . . . . . 16  |-  C  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
54oveqi 5947 . . . . . . . . . . . . . . 15  |-  ( x C w )  =  ( x ( ( abs  o.  -  )  |`  ( A  X.  A
) ) w )
6 ovres 6076 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  /\  w  e.  A )  ->  ( x ( ( abs  o.  -  )  |`  ( A  X.  A
) ) w )  =  ( x ( abs  o.  -  )
w ) )
75, 6eqtrid 2249 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  w  e.  A )  ->  ( x C w )  =  ( x ( abs  o.  -  ) w ) )
87ad2ant2l 508 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x C w )  =  ( x ( abs  o.  -  )
w ) )
9 ssel2 3187 . . . . . . . . . . . . . 14  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  x  e.  CC )
10 ssel2 3187 . . . . . . . . . . . . . 14  |-  ( ( A  C_  CC  /\  w  e.  A )  ->  w  e.  CC )
11 eqid 2204 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1211cnmetdval 14919 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  w  e.  CC )  ->  ( x ( abs 
o.  -  ) w
)  =  ( abs `  ( x  -  w
) ) )
139, 10, 12syl2an 289 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x ( abs  o.  -  ) w )  =  ( abs `  (
x  -  w ) ) )
148, 13eqtrd 2237 . . . . . . . . . . . 12  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x C w )  =  ( abs `  (
x  -  w ) ) )
151, 2, 1, 3, 14syl22anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( x C w )  =  ( abs `  (
x  -  w ) ) )
1615breq1d 4053 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
x C w )  <  z  <->  ( abs `  ( x  -  w
) )  <  z
) )
17 ffvelcdm 5707 . . . . . . . . . . . . . 14  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( f `  x
)  e.  B )
1817ad2ant2lr 510 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  x )  e.  B
)
19 ffvelcdm 5707 . . . . . . . . . . . . . 14  |-  ( ( f : A --> B  /\  w  e.  A )  ->  ( f `  w
)  e.  B )
2019ad2ant2l 508 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  w )  e.  B
)
21 cncfmet.2 . . . . . . . . . . . . . . 15  |-  D  =  ( ( abs  o.  -  )  |`  ( B  X.  B ) )
2221oveqi 5947 . . . . . . . . . . . . . 14  |-  ( ( f `  x ) D ( f `  w ) )  =  ( ( f `  x ) ( ( abs  o.  -  )  |`  ( B  X.  B
) ) ( f `
 w ) )
23 ovres 6076 . . . . . . . . . . . . . 14  |-  ( ( ( f `  x
)  e.  B  /\  ( f `  w
)  e.  B )  ->  ( ( f `
 x ) ( ( abs  o.  -  )  |`  ( B  X.  B ) ) ( f `  w ) )  =  ( ( f `  x ) ( abs  o.  -  ) ( f `  w ) ) )
2422, 23eqtrid 2249 . . . . . . . . . . . . 13  |-  ( ( ( f `  x
)  e.  B  /\  ( f `  w
)  e.  B )  ->  ( ( f `
 x ) D ( f `  w
) )  =  ( ( f `  x
) ( abs  o.  -  ) ( f `
 w ) ) )
2518, 20, 24syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x ) D ( f `  w ) )  =  ( ( f `  x ) ( abs 
o.  -  ) (
f `  w )
) )
26 simpllr 534 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  B  C_  CC )
2726, 18sseldd 3193 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  x )  e.  CC )
2826, 20sseldd 3193 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  w )  e.  CC )
2911cnmetdval 14919 . . . . . . . . . . . . 13  |-  ( ( ( f `  x
)  e.  CC  /\  ( f `  w
)  e.  CC )  ->  ( ( f `
 x ) ( abs  o.  -  )
( f `  w
) )  =  ( abs `  ( ( f `  x )  -  ( f `  w ) ) ) )
3027, 28, 29syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x )
( abs  o.  -  )
( f `  w
) )  =  ( abs `  ( ( f `  x )  -  ( f `  w ) ) ) )
3125, 30eqtrd 2237 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x ) D ( f `  w ) )  =  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) ) )
3231breq1d 4053 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( f `  x
) D ( f `
 w ) )  <  y  <->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
) )
3316, 32imbi12d 234 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3433anassrs 400 . . . . . . . 8  |-  ( ( ( ( ( A 
C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  /\  w  e.  A
)  ->  ( (
( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3534ralbidva 2501 . . . . . . 7  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( A. w  e.  A  ( ( x C w )  <  z  ->  ( ( f `  x ) D ( f `  w ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3635rexbidv 2506 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( E. z  e.  RR+  A. w  e.  A  ( (
x C w )  <  z  ->  (
( f `  x
) D ( f `
 w ) )  <  y )  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3736ralbidv 2505 . . . . 5  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3837ralbidva 2501 . . . 4  |-  ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  <  z  ->  ( ( f `  x ) D ( f `  w ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3938pm5.32da 452 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y ) )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) ) )
40 cnxmet 14921 . . . . . 6  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
41 xmetres2 14769 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
4240, 41mpan 424 . . . . 5  |-  ( A 
C_  CC  ->  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  e.  ( *Met `  A
) )
434, 42eqeltrid 2291 . . . 4  |-  ( A 
C_  CC  ->  C  e.  ( *Met `  A ) )
44 xmetres2 14769 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( B  X.  B ) )  e.  ( *Met `  B ) )
4540, 44mpan 424 . . . . 5  |-  ( B 
C_  CC  ->  ( ( abs  o.  -  )  |`  ( B  X.  B
) )  e.  ( *Met `  B
) )
4621, 45eqeltrid 2291 . . . 4  |-  ( B 
C_  CC  ->  D  e.  ( *Met `  B ) )
47 cncfmet.3 . . . . 5  |-  J  =  ( MetOpen `  C )
48 cncfmet.4 . . . . 5  |-  K  =  ( MetOpen `  D )
4947, 48metcn 14904 . . . 4  |-  ( ( C  e.  ( *Met `  A )  /\  D  e.  ( *Met `  B
) )  ->  (
f  e.  ( J  Cn  K )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y ) ) ) )
5043, 46, 49syl2an 289 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( J  Cn  K )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y ) ) ) )
51 elcncf 14963 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( A
-cn-> B )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) ) )
5239, 50, 513bitr4rd 221 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( A
-cn-> B )  <->  f  e.  ( J  Cn  K
) ) )
5352eqrdv 2202 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( J  Cn  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484    C_ wss 3165   class class class wbr 4043    X. cxp 4671    |` cres 4675    o. ccom 4677   -->wf 5264   ` cfv 5268  (class class class)co 5934   CCcc 7905    < clt 8089    - cmin 8225   RR+crp 9757   abscabs 11227   *Metcxmet 14216   MetOpencmopn 14221    Cn ccn 14575   -cn->ccncf 14960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-map 6727  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-xneg 9876  df-xadd 9877  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-topgen 13010  df-psmet 14223  df-xmet 14224  df-met 14225  df-bl 14226  df-mopn 14227  df-top 14388  df-topon 14401  df-bases 14433  df-cn 14578  df-cnp 14579  df-cncf 14961
This theorem is referenced by:  cncfcncntop  14983
  Copyright terms: Public domain W3C validator