| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncfmet | Unicode version | ||
| Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.) |
| Ref | Expression |
|---|---|
| cncfmet.1 |
|
| cncfmet.2 |
|
| cncfmet.3 |
|
| cncfmet.4 |
|
| Ref | Expression |
|---|---|
| cncfmet |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll 533 |
. . . . . . . . . . . 12
| |
| 2 | simprl 529 |
. . . . . . . . . . . 12
| |
| 3 | simprr 531 |
. . . . . . . . . . . 12
| |
| 4 | cncfmet.1 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 4 | oveqi 5947 |
. . . . . . . . . . . . . . 15
|
| 6 | ovres 6076 |
. . . . . . . . . . . . . . 15
| |
| 7 | 5, 6 | eqtrid 2249 |
. . . . . . . . . . . . . 14
|
| 8 | 7 | ad2ant2l 508 |
. . . . . . . . . . . . 13
|
| 9 | ssel2 3187 |
. . . . . . . . . . . . . 14
| |
| 10 | ssel2 3187 |
. . . . . . . . . . . . . 14
| |
| 11 | eqid 2204 |
. . . . . . . . . . . . . . 15
| |
| 12 | 11 | cnmetdval 14919 |
. . . . . . . . . . . . . 14
|
| 13 | 9, 10, 12 | syl2an 289 |
. . . . . . . . . . . . 13
|
| 14 | 8, 13 | eqtrd 2237 |
. . . . . . . . . . . 12
|
| 15 | 1, 2, 1, 3, 14 | syl22anc 1250 |
. . . . . . . . . . 11
|
| 16 | 15 | breq1d 4053 |
. . . . . . . . . 10
|
| 17 | ffvelcdm 5707 |
. . . . . . . . . . . . . 14
| |
| 18 | 17 | ad2ant2lr 510 |
. . . . . . . . . . . . 13
|
| 19 | ffvelcdm 5707 |
. . . . . . . . . . . . . 14
| |
| 20 | 19 | ad2ant2l 508 |
. . . . . . . . . . . . 13
|
| 21 | cncfmet.2 |
. . . . . . . . . . . . . . 15
| |
| 22 | 21 | oveqi 5947 |
. . . . . . . . . . . . . 14
|
| 23 | ovres 6076 |
. . . . . . . . . . . . . 14
| |
| 24 | 22, 23 | eqtrid 2249 |
. . . . . . . . . . . . 13
|
| 25 | 18, 20, 24 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 26 | simpllr 534 |
. . . . . . . . . . . . . 14
| |
| 27 | 26, 18 | sseldd 3193 |
. . . . . . . . . . . . 13
|
| 28 | 26, 20 | sseldd 3193 |
. . . . . . . . . . . . 13
|
| 29 | 11 | cnmetdval 14919 |
. . . . . . . . . . . . 13
|
| 30 | 27, 28, 29 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 31 | 25, 30 | eqtrd 2237 |
. . . . . . . . . . 11
|
| 32 | 31 | breq1d 4053 |
. . . . . . . . . 10
|
| 33 | 16, 32 | imbi12d 234 |
. . . . . . . . 9
|
| 34 | 33 | anassrs 400 |
. . . . . . . 8
|
| 35 | 34 | ralbidva 2501 |
. . . . . . 7
|
| 36 | 35 | rexbidv 2506 |
. . . . . 6
|
| 37 | 36 | ralbidv 2505 |
. . . . 5
|
| 38 | 37 | ralbidva 2501 |
. . . 4
|
| 39 | 38 | pm5.32da 452 |
. . 3
|
| 40 | cnxmet 14921 |
. . . . . 6
| |
| 41 | xmetres2 14769 |
. . . . . 6
| |
| 42 | 40, 41 | mpan 424 |
. . . . 5
|
| 43 | 4, 42 | eqeltrid 2291 |
. . . 4
|
| 44 | xmetres2 14769 |
. . . . . 6
| |
| 45 | 40, 44 | mpan 424 |
. . . . 5
|
| 46 | 21, 45 | eqeltrid 2291 |
. . . 4
|
| 47 | cncfmet.3 |
. . . . 5
| |
| 48 | cncfmet.4 |
. . . . 5
| |
| 49 | 47, 48 | metcn 14904 |
. . . 4
|
| 50 | 43, 46, 49 | syl2an 289 |
. . 3
|
| 51 | elcncf 14963 |
. . 3
| |
| 52 | 39, 50, 51 | 3bitr4rd 221 |
. 2
|
| 53 | 52 | eqrdv 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-isom 5277 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-map 6727 df-sup 7068 df-inf 7069 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-xneg 9876 df-xadd 9877 df-seqfrec 10574 df-exp 10665 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-topgen 13010 df-psmet 14223 df-xmet 14224 df-met 14225 df-bl 14226 df-mopn 14227 df-top 14388 df-topon 14401 df-bases 14433 df-cn 14578 df-cnp 14579 df-cncf 14961 |
| This theorem is referenced by: cncfcncntop 14983 |
| Copyright terms: Public domain | W3C validator |