ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveqi GIF version

Theorem oveqi 5938
Description: Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)
Hypothesis
Ref Expression
oveq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
oveqi (𝐶𝐴𝐷) = (𝐶𝐵𝐷)

Proof of Theorem oveqi
StepHypRef Expression
1 oveq1i.1 . 2 𝐴 = 𝐵
2 oveq 5931 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷))
31, 2ax-mp 5 1 (𝐶𝐴𝐷) = (𝐶𝐵𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  oveq123i  5939  fvmpopr2d  6063  iseqvalcbv  10568  imasplusg  13010  mndprop  13143  issubm  13174  grpprop  13220  ablprop  13503  ringprop  13672  blres  14754  cncfmet  14912
  Copyright terms: Public domain W3C validator