Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveqi | GIF version |
Description: Equality inference for operation value. (Contributed by NM, 24-Nov-2007.) |
Ref | Expression |
---|---|
oveq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
oveqi | ⊢ (𝐶𝐴𝐷) = (𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | oveq 5871 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷) = (𝐶𝐵𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: oveq123i 5879 iseqvalcbv 10425 mndprop 12706 issubm 12724 grpprop 12754 ablprop 12896 ringprop 13011 blres 13485 cncfmet 13630 |
Copyright terms: Public domain | W3C validator |