| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqi | GIF version | ||
| Description: Equality inference for operation value. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| oveq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| oveqi | ⊢ (𝐶𝐴𝐷) = (𝐶𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | oveq 5950 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷) = (𝐶𝐵𝐷) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: oveq123i 5958 fvmpopr2d 6082 iseqvalcbv 10604 imasplusg 13140 mndprop 13273 issubm 13304 grpprop 13350 ablprop 13633 ringprop 13802 blres 14906 cncfmet 15064 |
| Copyright terms: Public domain | W3C validator |