ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveqi GIF version

Theorem oveqi 5741
Description: Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)
Hypothesis
Ref Expression
oveq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
oveqi (𝐶𝐴𝐷) = (𝐶𝐵𝐷)

Proof of Theorem oveqi
StepHypRef Expression
1 oveq1i.1 . 2 𝐴 = 𝐵
2 oveq 5734 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷))
31, 2ax-mp 7 1 (𝐶𝐴𝐷) = (𝐶𝐵𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1314  (class class class)co 5728
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-rex 2396  df-uni 3703  df-br 3896  df-iota 5046  df-fv 5089  df-ov 5731
This theorem is referenced by:  oveq123i  5742  iseqvalcbv  10123  blres  12423  cncfmet  12565
  Copyright terms: Public domain W3C validator