ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpprop Unicode version

Theorem grpprop 13425
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
grpprop.b  |-  ( Base `  K )  =  (
Base `  L )
grpprop.p  |-  ( +g  `  K )  =  ( +g  `  L )
Assertion
Ref Expression
grpprop  |-  ( K  e.  Grp  <->  L  e.  Grp )

Proof of Theorem grpprop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2207 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  K ) )
2 grpprop.b . . . 4  |-  ( Base `  K )  =  (
Base `  L )
32a1i 9 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  L ) )
4 grpprop.p . . . . 5  |-  ( +g  `  K )  =  ( +g  `  L )
54oveqi 5970 . . . 4  |-  ( x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y )
65a1i 9 . . 3  |-  ( ( T.  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
71, 3, 6grppropd 13424 . 2  |-  ( T. 
->  ( K  e.  Grp  <->  L  e.  Grp ) )
87mptru 1382 1  |-  ( K  e.  Grp  <->  L  e.  Grp )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   T. wtru 1374    e. wcel 2177   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   Grpcgrp 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410
This theorem is referenced by:  rmodislmod  14188
  Copyright terms: Public domain W3C validator