ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpprop Unicode version

Theorem grpprop 12725
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
grpprop.b  |-  ( Base `  K )  =  (
Base `  L )
grpprop.p  |-  ( +g  `  K )  =  ( +g  `  L )
Assertion
Ref Expression
grpprop  |-  ( K  e.  Grp  <->  L  e.  Grp )

Proof of Theorem grpprop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2171 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  K ) )
2 grpprop.b . . . 4  |-  ( Base `  K )  =  (
Base `  L )
32a1i 9 . . 3  |-  ( T. 
->  ( Base `  K
)  =  ( Base `  L ) )
4 grpprop.p . . . . 5  |-  ( +g  `  K )  =  ( +g  `  L )
54oveqi 5866 . . . 4  |-  ( x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y )
65a1i 9 . . 3  |-  ( ( T.  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
71, 3, 6grppropd 12724 . 2  |-  ( T. 
->  ( K  e.  Grp  <->  L  e.  Grp ) )
87mptru 1357 1  |-  ( K  e.  Grp  <->  L  e.  Grp )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   T. wtru 1349    e. wcel 2141   ` cfv 5198  (class class class)co 5853   Basecbs 12416   +g cplusg 12480   Grpcgrp 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-0g 12598  df-mgm 12610  df-sgrp 12643  df-mnd 12653  df-grp 12711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator