ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfex Unicode version

Theorem pnfex 7910
Description: Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
pnfex  |- +oo  e.  _V

Proof of Theorem pnfex
StepHypRef Expression
1 pnfxr 7909 . 2  |- +oo  e.  RR*
21elexi 2721 1  |- +oo  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2125   _Vcvv 2709   +oocpnf 7888   RR*cxr 7890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-un 4388  ax-cnex 7802
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-uni 3769  df-pnf 7893  df-xr 7895
This theorem is referenced by:  mnfxr  7913  elxnn0  9134  elxr  9661  fxnn0nninf  10315
  Copyright terms: Public domain W3C validator