ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfex Unicode version

Theorem pnfex 7948
Description: Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
pnfex  |- +oo  e.  _V

Proof of Theorem pnfex
StepHypRef Expression
1 pnfxr 7947 . 2  |- +oo  e.  RR*
21elexi 2737 1  |- +oo  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2725   +oocpnf 7926   RR*cxr 7928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-un 4410  ax-cnex 7840
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-uni 3789  df-pnf 7931  df-xr 7933
This theorem is referenced by:  mnfxr  7951  elxnn0  9175  elxr  9708  fxnn0nninf  10369  pc0  12232
  Copyright terms: Public domain W3C validator