Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pnfex | Unicode version |
Description: Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
pnfex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 7909 | . 2 | |
2 | 1 | elexi 2721 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2125 cvv 2709 cpnf 7888 cxr 7890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-un 4388 ax-cnex 7802 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-uni 3769 df-pnf 7893 df-xr 7895 |
This theorem is referenced by: mnfxr 7913 elxnn0 9134 elxr 9661 fxnn0nninf 10315 |
Copyright terms: Public domain | W3C validator |