Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pnfex | Unicode version |
Description: Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
pnfex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 7947 | . 2 | |
2 | 1 | elexi 2737 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 cvv 2725 cpnf 7926 cxr 7928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-un 4410 ax-cnex 7840 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-uni 3789 df-pnf 7931 df-xr 7933 |
This theorem is referenced by: mnfxr 7951 elxnn0 9175 elxr 9708 fxnn0nninf 10369 pc0 12232 |
Copyright terms: Public domain | W3C validator |