ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pc0 Unicode version

Theorem pc0 12195
Description: The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc0  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )

Proof of Theorem pc0
Dummy variables  x  y  n  p  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 9184 . . 3  |-  0  e.  ZZ
2 zq 9542 . . 3  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
31, 2ax-mp 5 . 2  |-  0  e.  QQ
4 iftrue 3511 . . . 4  |-  ( r  =  0  ->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )  = +oo )
54adantl 275 . . 3  |-  ( ( p  =  P  /\  r  =  0 )  ->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) ) )  = +oo )
6 df-pc 12176 . . 3  |-  pCnt  =  ( p  e.  Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) ) ) ) )
7 pnfex 7934 . . 3  |- +oo  e.  _V
85, 6, 7ovmpoa 5954 . 2  |-  ( ( P  e.  Prime  /\  0  e.  QQ )  ->  ( P  pCnt  0 )  = +oo )
93, 8mpan2 422 1  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   E.wrex 2436   {crab 2439   ifcif 3506   class class class wbr 3967   iotacio 5136  (class class class)co 5827   supcsup 6929   RRcr 7734   0cc0 7735   +oocpnf 7912    < clt 7915    - cmin 8051    / cdiv 8550   NNcn 8839   NN0cn0 9096   ZZcz 9173   QQcq 9535   ^cexp 10428    || cdvds 11695   Primecprime 12000    pCnt cpc 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-id 4256  df-po 4259  df-iso 4260  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-fv 5181  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-z 9174  df-q 9536  df-pc 12176
This theorem is referenced by:  pcxcl  12201  pcge0  12202  pcdvdsb  12209
  Copyright terms: Public domain W3C validator