| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfxr | Unicode version | ||
| Description: Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| mnfxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mnf 8180 |
. . . . 5
| |
| 2 | pnfex 8196 |
. . . . . 6
| |
| 3 | 2 | pwex 4266 |
. . . . 5
|
| 4 | 1, 3 | eqeltri 2302 |
. . . 4
|
| 5 | 4 | prid2 3773 |
. . 3
|
| 6 | elun2 3372 |
. . 3
| |
| 7 | 5, 6 | ax-mp 5 |
. 2
|
| 8 | df-xr 8181 |
. 2
| |
| 9 | 7, 8 | eleqtrri 2305 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-un 4523 ax-cnex 8086 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-pnf 8179 df-mnf 8180 df-xr 8181 |
| This theorem is referenced by: elxr 9968 xrltnr 9971 mnflt 9975 mnfltpnf 9977 nltmnf 9980 mnfle 9984 xrltnsym 9985 xrlttri3 9989 ngtmnft 10009 xrrebnd 10011 xrre2 10013 xrre3 10014 ge0gtmnf 10015 xnegcl 10024 xltnegi 10027 xaddf 10036 xaddval 10037 xaddmnf1 10040 xaddmnf2 10041 pnfaddmnf 10042 mnfaddpnf 10043 xrex 10048 xltadd1 10068 xlt2add 10072 xsubge0 10073 xposdif 10074 xleaddadd 10079 elioc2 10128 elico2 10129 elicc2 10130 ioomax 10140 iccmax 10141 elioomnf 10160 unirnioo 10165 xrmaxadd 11767 reopnap 15214 blssioo 15221 tgioo 15222 |
| Copyright terms: Public domain | W3C validator |