| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfxr | Unicode version | ||
| Description: Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| mnfxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mnf 8109 |
. . . . 5
| |
| 2 | pnfex 8125 |
. . . . . 6
| |
| 3 | 2 | pwex 4226 |
. . . . 5
|
| 4 | 1, 3 | eqeltri 2277 |
. . . 4
|
| 5 | 4 | prid2 3739 |
. . 3
|
| 6 | elun2 3340 |
. . 3
| |
| 7 | 5, 6 | ax-mp 5 |
. 2
|
| 8 | df-xr 8110 |
. 2
| |
| 9 | 7, 8 | eleqtrri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-un 4479 ax-cnex 8015 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-pnf 8108 df-mnf 8109 df-xr 8110 |
| This theorem is referenced by: elxr 9897 xrltnr 9900 mnflt 9904 mnfltpnf 9906 nltmnf 9909 mnfle 9913 xrltnsym 9914 xrlttri3 9918 ngtmnft 9938 xrrebnd 9940 xrre2 9942 xrre3 9943 ge0gtmnf 9944 xnegcl 9953 xltnegi 9956 xaddf 9965 xaddval 9966 xaddmnf1 9969 xaddmnf2 9970 pnfaddmnf 9971 mnfaddpnf 9972 xrex 9977 xltadd1 9997 xlt2add 10001 xsubge0 10002 xposdif 10003 xleaddadd 10008 elioc2 10057 elico2 10058 elicc2 10059 ioomax 10069 iccmax 10070 elioomnf 10089 unirnioo 10094 xrmaxadd 11543 reopnap 14989 blssioo 14996 tgioo 14997 |
| Copyright terms: Public domain | W3C validator |