Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mnfxr | Unicode version |
Description: Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
mnfxr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mnf 7969 | . . . . 5 | |
2 | pnfex 7985 | . . . . . 6 | |
3 | 2 | pwex 4178 | . . . . 5 |
4 | 1, 3 | eqeltri 2248 | . . . 4 |
5 | 4 | prid2 3696 | . . 3 |
6 | elun2 3301 | . . 3 | |
7 | 5, 6 | ax-mp 5 | . 2 |
8 | df-xr 7970 | . 2 | |
9 | 7, 8 | eleqtrri 2251 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2146 cvv 2735 cun 3125 cpw 3572 cpr 3590 cr 7785 cpnf 7963 cmnf 7964 cxr 7965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-un 4427 ax-cnex 7877 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-pnf 7968 df-mnf 7969 df-xr 7970 |
This theorem is referenced by: elxr 9747 xrltnr 9750 mnflt 9754 mnfltpnf 9756 nltmnf 9759 mnfle 9763 xrltnsym 9764 xrlttri3 9768 ngtmnft 9788 xrrebnd 9790 xrre2 9792 xrre3 9793 ge0gtmnf 9794 xnegcl 9803 xltnegi 9806 xaddf 9815 xaddval 9816 xaddmnf1 9819 xaddmnf2 9820 pnfaddmnf 9821 mnfaddpnf 9822 xrex 9827 xltadd1 9847 xlt2add 9851 xsubge0 9852 xposdif 9853 xleaddadd 9858 elioc2 9907 elico2 9908 elicc2 9909 ioomax 9919 iccmax 9920 elioomnf 9939 unirnioo 9944 xrmaxadd 11237 reopnap 13609 blssioo 13616 tgioo 13617 |
Copyright terms: Public domain | W3C validator |