| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfxr | Unicode version | ||
| Description: Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| mnfxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mnf 8140 |
. . . . 5
| |
| 2 | pnfex 8156 |
. . . . . 6
| |
| 3 | 2 | pwex 4238 |
. . . . 5
|
| 4 | 1, 3 | eqeltri 2279 |
. . . 4
|
| 5 | 4 | prid2 3745 |
. . 3
|
| 6 | elun2 3345 |
. . 3
| |
| 7 | 5, 6 | ax-mp 5 |
. 2
|
| 8 | df-xr 8141 |
. 2
| |
| 9 | 7, 8 | eleqtrri 2282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-un 4493 ax-cnex 8046 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 df-pnf 8139 df-mnf 8140 df-xr 8141 |
| This theorem is referenced by: elxr 9928 xrltnr 9931 mnflt 9935 mnfltpnf 9937 nltmnf 9940 mnfle 9944 xrltnsym 9945 xrlttri3 9949 ngtmnft 9969 xrrebnd 9971 xrre2 9973 xrre3 9974 ge0gtmnf 9975 xnegcl 9984 xltnegi 9987 xaddf 9996 xaddval 9997 xaddmnf1 10000 xaddmnf2 10001 pnfaddmnf 10002 mnfaddpnf 10003 xrex 10008 xltadd1 10028 xlt2add 10032 xsubge0 10033 xposdif 10034 xleaddadd 10039 elioc2 10088 elico2 10089 elicc2 10090 ioomax 10100 iccmax 10101 elioomnf 10120 unirnioo 10125 xrmaxadd 11657 reopnap 15103 blssioo 15110 tgioo 15111 |
| Copyright terms: Public domain | W3C validator |