![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnfex | GIF version |
Description: Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
pnfex | ⊢ +∞ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 7637 | . 2 ⊢ +∞ ∈ ℝ* | |
2 | 1 | elexi 2645 | 1 ⊢ +∞ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1445 Vcvv 2633 +∞cpnf 7616 ℝ*cxr 7618 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-un 4284 ax-cnex 7533 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-uni 3676 df-pnf 7621 df-xr 7623 |
This theorem is referenced by: mnfxr 7641 elxnn0 8836 elxr 9346 fxnn0nninf 9993 |
Copyright terms: Public domain | W3C validator |