ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfex GIF version

Theorem pnfex 8156
Description: Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
pnfex +∞ ∈ V

Proof of Theorem pnfex
StepHypRef Expression
1 pnfxr 8155 . 2 +∞ ∈ ℝ*
21elexi 2786 1 +∞ ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2177  Vcvv 2773  +∞cpnf 8134  *cxr 8136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-un 4493  ax-cnex 8046
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3860  df-pnf 8139  df-xr 8141
This theorem is referenced by:  mnfxr  8159  elxnn0  9390  elxr  9928  xnn0nnen  10614  fxnn0nninf  10616  nninfct  12447  pc0  12712
  Copyright terms: Public domain W3C validator