ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfex GIF version

Theorem pnfex 7952
Description: Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
pnfex +∞ ∈ V

Proof of Theorem pnfex
StepHypRef Expression
1 pnfxr 7951 . 2 +∞ ∈ ℝ*
21elexi 2738 1 +∞ ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2136  Vcvv 2726  +∞cpnf 7930  *cxr 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-un 4411  ax-cnex 7844
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-pnf 7935  df-xr 7937
This theorem is referenced by:  mnfxr  7955  elxnn0  9179  elxr  9712  fxnn0nninf  10373  pc0  12236
  Copyright terms: Public domain W3C validator