ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfex GIF version

Theorem pnfex 8080
Description: Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
pnfex +∞ ∈ V

Proof of Theorem pnfex
StepHypRef Expression
1 pnfxr 8079 . 2 +∞ ∈ ℝ*
21elexi 2775 1 +∞ ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  +∞cpnf 8058  *cxr 8060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-un 4468  ax-cnex 7970
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-pnf 8063  df-xr 8065
This theorem is referenced by:  mnfxr  8083  elxnn0  9314  elxr  9851  xnn0nnen  10529  fxnn0nninf  10531  nninfct  12208  pc0  12473
  Copyright terms: Public domain W3C validator