| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfex | GIF version | ||
| Description: Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| pnfex | ⊢ +∞ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 8155 | . 2 ⊢ +∞ ∈ ℝ* | |
| 2 | 1 | elexi 2786 | 1 ⊢ +∞ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 +∞cpnf 8134 ℝ*cxr 8136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-un 4493 ax-cnex 8046 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 df-pnf 8139 df-xr 8141 |
| This theorem is referenced by: mnfxr 8159 elxnn0 9390 elxr 9928 xnn0nnen 10614 fxnn0nninf 10616 nninfct 12447 pc0 12712 |
| Copyright terms: Public domain | W3C validator |