ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poleloe GIF version

Theorem poleloe 5128
Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poleloe (𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))

Proof of Theorem poleloe
StepHypRef Expression
1 brun 4135 . 2 (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 I 𝐵))
2 ideqg 4873 . . 3 (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
32orbi2d 795 . 2 (𝐵𝑉 → ((𝐴𝑅𝐵𝐴 I 𝐵) ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
41, 3bitrid 192 1 (𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 713   = wceq 1395  wcel 2200  cun 3195   class class class wbr 4083   I cid 4379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726
This theorem is referenced by:  poltletr  5129
  Copyright terms: Public domain W3C validator