ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poleloe GIF version

Theorem poleloe 5104
Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poleloe (𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))

Proof of Theorem poleloe
StepHypRef Expression
1 brun 4114 . 2 (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 I 𝐵))
2 ideqg 4850 . . 3 (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
32orbi2d 794 . 2 (𝐵𝑉 → ((𝐴𝑅𝐵𝐴 I 𝐵) ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
41, 3bitrid 192 1 (𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 712   = wceq 1375  wcel 2180  cun 3175   class class class wbr 4062   I cid 4356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703
This theorem is referenced by:  poltletr  5105
  Copyright terms: Public domain W3C validator