Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > posng | Unicode version |
Description: Partial ordering of a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.) |
Ref | Expression |
---|---|
posng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-po 4269 | . 2 | |
2 | breq2 3981 | . . . . . . . . . . 11 | |
3 | 2 | anbi2d 460 | . . . . . . . . . 10 |
4 | breq2 3981 | . . . . . . . . . 10 | |
5 | 3, 4 | imbi12d 233 | . . . . . . . . 9 |
6 | 5 | anbi2d 460 | . . . . . . . 8 |
7 | 6 | ralsng 3611 | . . . . . . 7 |
8 | 7 | ralbidv 2464 | . . . . . 6 |
9 | simpl 108 | . . . . . . . . . 10 | |
10 | breq2 3981 | . . . . . . . . . 10 | |
11 | 9, 10 | syl5ib 153 | . . . . . . . . 9 |
12 | 11 | biantrud 302 | . . . . . . . 8 |
13 | 12 | bicomd 140 | . . . . . . 7 |
14 | 13 | ralsng 3611 | . . . . . 6 |
15 | 8, 14 | bitrd 187 | . . . . 5 |
16 | 15 | ralbidv 2464 | . . . 4 |
17 | breq12 3982 | . . . . . . 7 | |
18 | 17 | anidms 395 | . . . . . 6 |
19 | 18 | notbid 657 | . . . . 5 |
20 | 19 | ralsng 3611 | . . . 4 |
21 | 16, 20 | bitrd 187 | . . 3 |
22 | 21 | adantl 275 | . 2 |
23 | 1, 22 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1342 wcel 2135 wral 2442 cvv 2722 csn 3571 class class class wbr 3977 wpo 4267 wrel 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-v 2724 df-sbc 2948 df-un 3116 df-sn 3577 df-pr 3578 df-op 3580 df-br 3978 df-po 4269 |
This theorem is referenced by: sosng 4672 |
Copyright terms: Public domain | W3C validator |