| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > posng | Unicode version | ||
| Description: Partial ordering of a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| posng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-po 4343 |
. 2
| |
| 2 | breq2 4048 |
. . . . . . . . . . 11
| |
| 3 | 2 | anbi2d 464 |
. . . . . . . . . 10
|
| 4 | breq2 4048 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | imbi12d 234 |
. . . . . . . . 9
|
| 6 | 5 | anbi2d 464 |
. . . . . . . 8
|
| 7 | 6 | ralsng 3673 |
. . . . . . 7
|
| 8 | 7 | ralbidv 2506 |
. . . . . 6
|
| 9 | simpl 109 |
. . . . . . . . . 10
| |
| 10 | breq2 4048 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | imbitrid 154 |
. . . . . . . . 9
|
| 12 | 11 | biantrud 304 |
. . . . . . . 8
|
| 13 | 12 | bicomd 141 |
. . . . . . 7
|
| 14 | 13 | ralsng 3673 |
. . . . . 6
|
| 15 | 8, 14 | bitrd 188 |
. . . . 5
|
| 16 | 15 | ralbidv 2506 |
. . . 4
|
| 17 | breq12 4049 |
. . . . . . 7
| |
| 18 | 17 | anidms 397 |
. . . . . 6
|
| 19 | 18 | notbid 669 |
. . . . 5
|
| 20 | 19 | ralsng 3673 |
. . . 4
|
| 21 | 16, 20 | bitrd 188 |
. . 3
|
| 22 | 21 | adantl 277 |
. 2
|
| 23 | 1, 22 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-sbc 2999 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-po 4343 |
| This theorem is referenced by: sosng 4748 |
| Copyright terms: Public domain | W3C validator |