| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid2g | Unicode version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 3742 |
. 2
| |
| 2 | prcom 3714 |
. 2
| |
| 3 | 1, 2 | eleqtrdi 2299 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: en2lp 4615 pw2f1odclem 6951 en2eqpr 7025 maxleim 11601 maxabslemval 11604 xrmaxleim 11640 xrmaxiflemval 11646 xrmaxaddlem 11656 2stropg 13038 2strop1g 13041 coseq0negpitopi 15393 umgrpredgv 15821 |
| Copyright terms: Public domain | W3C validator |