ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid2g Unicode version

Theorem prid2g 3719
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
Assertion
Ref Expression
prid2g  |-  ( B  e.  V  ->  B  e.  { A ,  B } )

Proof of Theorem prid2g
StepHypRef Expression
1 prid1g 3718 . 2  |-  ( B  e.  V  ->  B  e.  { B ,  A } )
2 prcom 3690 . 2  |-  { B ,  A }  =  { A ,  B }
31, 2eleqtrdi 2282 1  |-  ( B  e.  V  ->  B  e.  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160   {cpr 3615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2758  df-un 3153  df-sn 3620  df-pr 3621
This theorem is referenced by:  en2lp  4578  pw2f1odclem  6877  en2eqpr  6950  maxleim  11323  maxabslemval  11326  xrmaxleim  11361  xrmaxiflemval  11367  xrmaxaddlem  11377  2stropg  12712  2strop1g  12715  coseq0negpitopi  14899
  Copyright terms: Public domain W3C validator