ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid2g Unicode version

Theorem prid2g 3727
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
Assertion
Ref Expression
prid2g  |-  ( B  e.  V  ->  B  e.  { A ,  B } )

Proof of Theorem prid2g
StepHypRef Expression
1 prid1g 3726 . 2  |-  ( B  e.  V  ->  B  e.  { B ,  A } )
2 prcom 3698 . 2  |-  { B ,  A }  =  { A ,  B }
31, 2eleqtrdi 2289 1  |-  ( B  e.  V  ->  B  e.  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629
This theorem is referenced by:  en2lp  4590  pw2f1odclem  6895  en2eqpr  6968  maxleim  11370  maxabslemval  11373  xrmaxleim  11409  xrmaxiflemval  11415  xrmaxaddlem  11425  2stropg  12798  2strop1g  12801  coseq0negpitopi  15072
  Copyright terms: Public domain W3C validator