ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid2g Unicode version

Theorem prid2g 3660
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
Assertion
Ref Expression
prid2g  |-  ( B  e.  V  ->  B  e.  { A ,  B } )

Proof of Theorem prid2g
StepHypRef Expression
1 prid1g 3659 . 2  |-  ( B  e.  V  ->  B  e.  { B ,  A } )
2 prcom 3631 . 2  |-  { B ,  A }  =  { A ,  B }
31, 2eleqtrdi 2247 1  |-  ( B  e.  V  ->  B  e.  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2125   {cpr 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-sn 3562  df-pr 3563
This theorem is referenced by:  en2lp  4507  en2eqpr  6841  maxleim  11082  maxabslemval  11085  xrmaxleim  11118  xrmaxiflemval  11124  xrmaxaddlem  11134  2stropg  12239  2strop1g  12242  coseq0negpitopi  13104
  Copyright terms: Public domain W3C validator