| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid2g | GIF version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid2g | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 3737 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐴}) | |
| 2 | prcom 3709 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 3 | 1, 2 | eleqtrdi 2298 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 {cpr 3634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: en2lp 4602 pw2f1odclem 6931 en2eqpr 7004 maxleim 11516 maxabslemval 11519 xrmaxleim 11555 xrmaxiflemval 11561 xrmaxaddlem 11571 2stropg 12953 2strop1g 12956 coseq0negpitopi 15308 |
| Copyright terms: Public domain | W3C validator |