ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid2g GIF version

Theorem prid2g 3771
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
Assertion
Ref Expression
prid2g (𝐵𝑉𝐵 ∈ {𝐴, 𝐵})

Proof of Theorem prid2g
StepHypRef Expression
1 prid1g 3770 . 2 (𝐵𝑉𝐵 ∈ {𝐵, 𝐴})
2 prcom 3742 . 2 {𝐵, 𝐴} = {𝐴, 𝐵}
31, 2eleqtrdi 2322 1 (𝐵𝑉𝐵 ∈ {𝐴, 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  en2lp  4645  pw2f1odclem  6991  en2eqpr  7065  maxleim  11711  maxabslemval  11714  xrmaxleim  11750  xrmaxiflemval  11756  xrmaxaddlem  11766  2stropg  13149  2strop1g  13152  coseq0negpitopi  15504  umgredgprv  15909  umgrpredgv  15939  uhgr2edg  15998  umgrvad2edg  16003
  Copyright terms: Public domain W3C validator