ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2eqpr Unicode version

Theorem en2eqpr 6864
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2eqpr  |-  ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  ->  ( A  =/=  B  ->  C  =  { A ,  B } ) )

Proof of Theorem en2eqpr
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6704 . . . . . 6  |-  ( C 
~~  2o  <->  E. f  f : C -1-1-onto-> 2o )
21biimpi 119 . . . . 5  |-  ( C 
~~  2o  ->  E. f 
f : C -1-1-onto-> 2o )
323ad2ant1 1007 . . . 4  |-  ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  ->  E. f  f : C -1-1-onto-> 2o )
43adantr 274 . . 3  |-  ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  ->  E. f 
f : C -1-1-onto-> 2o )
5 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  (/) )  ->  (
f `  x )  =  (/) )
6 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  (/) )  ->  (
f `  B )  =  (/) )
75, 6eqtr4d 2200 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  (/) )  ->  (
f `  x )  =  ( f `  B ) )
8 f1of1 5425 . . . . . . . . . . . . . 14  |-  ( f : C -1-1-onto-> 2o  ->  f : C -1-1-> 2o )
98adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  f : C -1-1-> 2o )
109adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( C 
~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  ->  f : C -1-1-> 2o )
11 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( C 
~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  ->  x  e.  C )
12 simpll3 1027 . . . . . . . . . . . . 13  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  B  e.  C )
1312adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( C 
~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  ->  B  e.  C )
14 f1fveq 5734 . . . . . . . . . . . 12  |-  ( ( f : C -1-1-> 2o  /\  ( x  e.  C  /\  B  e.  C
) )  ->  (
( f `  x
)  =  ( f `
 B )  <->  x  =  B ) )
1510, 11, 13, 14syl12anc 1225 . . . . . . . . . . 11  |-  ( ( ( ( ( C 
~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  ->  (
( f `  x
)  =  ( f `
 B )  <->  x  =  B ) )
1615ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  (/) )  ->  (
( f `  x
)  =  ( f `
 B )  <->  x  =  B ) )
177, 16mpbid 146 . . . . . . . . 9  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  (/) )  ->  x  =  B )
18 prid2g 3675 . . . . . . . . . . 11  |-  ( B  e.  C  ->  B  e.  { A ,  B } )
1913, 18syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( C 
~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  ->  B  e.  { A ,  B } )
2019ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  (/) )  ->  B  e.  { A ,  B } )
2117, 20eqeltrd 2241 . . . . . . . 8  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  (/) )  ->  x  e.  { A ,  B } )
22 simpllr 524 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  (/) )  ->  (
f `  x )  =  (/) )
23 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  (/) )  ->  (
f `  A )  =  (/) )
2422, 23eqtr4d 2200 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  (/) )  ->  (
f `  x )  =  ( f `  A ) )
25 simpll2 1026 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  A  e.  C )
2625adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C 
~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  ->  A  e.  C )
27 f1fveq 5734 . . . . . . . . . . . . 13  |-  ( ( f : C -1-1-> 2o  /\  ( x  e.  C  /\  A  e.  C
) )  ->  (
( f `  x
)  =  ( f `
 A )  <->  x  =  A ) )
2810, 11, 26, 27syl12anc 1225 . . . . . . . . . . . 12  |-  ( ( ( ( ( C 
~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  ->  (
( f `  x
)  =  ( f `
 A )  <->  x  =  A ) )
2928ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  (/) )  ->  (
( f `  x
)  =  ( f `
 A )  <->  x  =  A ) )
3024, 29mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  (/) )  ->  x  =  A )
31 prid1g 3674 . . . . . . . . . . . 12  |-  ( A  e.  C  ->  A  e.  { A ,  B } )
3226, 31syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( C 
~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  ->  A  e.  { A ,  B } )
3332ad3antrrr 484 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  (/) )  ->  A  e.  { A ,  B } )
3430, 33eqeltrd 2241 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  (/) )  ->  x  e.  { A ,  B } )
35 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  1o )  ->  (
f `  A )  =  1o )
36 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  1o )  ->  (
f `  B )  =  1o )
3735, 36eqtr4d 2200 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  1o )  ->  (
f `  A )  =  ( f `  B ) )
38 simplr 520 . . . . . . . . . . . . 13  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  A  =/=  B )
3938neneqd 2355 . . . . . . . . . . . 12  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  -.  A  =  B )
40 f1fveq 5734 . . . . . . . . . . . . 13  |-  ( ( f : C -1-1-> 2o  /\  ( A  e.  C  /\  B  e.  C
) )  ->  (
( f `  A
)  =  ( f `
 B )  <->  A  =  B ) )
419, 25, 12, 40syl12anc 1225 . . . . . . . . . . . 12  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  (
( f `  A
)  =  ( f `
 B )  <->  A  =  B ) )
4239, 41mtbird 663 . . . . . . . . . . 11  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  -.  ( f `  A
)  =  ( f `
 B ) )
4342ad4antr 486 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  1o )  ->  -.  ( f `  A
)  =  ( f `
 B ) )
4437, 43pm2.21dd 610 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  /\  (
f `  A )  =  1o )  ->  x  e.  { A ,  B } )
45 f1of 5426 . . . . . . . . . . . . 13  |-  ( f : C -1-1-onto-> 2o  ->  f : C
--> 2o )
4645adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  f : C --> 2o )
4746, 25ffvelrnd 5615 . . . . . . . . . . 11  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  (
f `  A )  e.  2o )
48 elpri 3593 . . . . . . . . . . . 12  |-  ( ( f `  A )  e.  { (/) ,  1o }  ->  ( ( f `
 A )  =  (/)  \/  ( f `  A )  =  1o ) )
49 df2o3 6389 . . . . . . . . . . . 12  |-  2o  =  { (/) ,  1o }
5048, 49eleq2s 2259 . . . . . . . . . . 11  |-  ( ( f `  A )  e.  2o  ->  (
( f `  A
)  =  (/)  \/  (
f `  A )  =  1o ) )
5147, 50syl 14 . . . . . . . . . 10  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  (
( f `  A
)  =  (/)  \/  (
f `  A )  =  1o ) )
5251ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  ->  (
( f `  A
)  =  (/)  \/  (
f `  A )  =  1o ) )
5334, 44, 52mpjaodan 788 . . . . . . . 8  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  /\  (
f `  B )  =  1o )  ->  x  e.  { A ,  B } )
5446, 12ffvelrnd 5615 . . . . . . . . . 10  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  (
f `  B )  e.  2o )
55 elpri 3593 . . . . . . . . . . 11  |-  ( ( f `  B )  e.  { (/) ,  1o }  ->  ( ( f `
 B )  =  (/)  \/  ( f `  B )  =  1o ) )
5655, 49eleq2s 2259 . . . . . . . . . 10  |-  ( ( f `  B )  e.  2o  ->  (
( f `  B
)  =  (/)  \/  (
f `  B )  =  1o ) )
5754, 56syl 14 . . . . . . . . 9  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  (
( f `  B
)  =  (/)  \/  (
f `  B )  =  1o ) )
5857ad2antrr 480 . . . . . . . 8  |-  ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  ->  (
( f `  B
)  =  (/)  \/  (
f `  B )  =  1o ) )
5921, 53, 58mpjaodan 788 . . . . . . 7  |-  ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  (/) )  ->  x  e.  { A ,  B } )
60 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  (/) )  ->  (
f `  A )  =  (/) )
61 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  (/) )  ->  (
f `  B )  =  (/) )
6260, 61eqtr4d 2200 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  (/) )  ->  (
f `  A )  =  ( f `  B ) )
6342ad4antr 486 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  (/) )  ->  -.  ( f `  A
)  =  ( f `
 B ) )
6462, 63pm2.21dd 610 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  (/) )  ->  x  e.  { A ,  B } )
65 simpllr 524 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  1o )  ->  (
f `  x )  =  1o )
66 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  1o )  ->  (
f `  A )  =  1o )
6765, 66eqtr4d 2200 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  1o )  ->  (
f `  x )  =  ( f `  A ) )
6828ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  1o )  ->  (
( f `  x
)  =  ( f `
 A )  <->  x  =  A ) )
6967, 68mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  1o )  ->  x  =  A )
7032ad3antrrr 484 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  1o )  ->  A  e.  { A ,  B } )
7169, 70eqeltrd 2241 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  /\  (
f `  A )  =  1o )  ->  x  e.  { A ,  B } )
7251ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  ->  (
( f `  A
)  =  (/)  \/  (
f `  A )  =  1o ) )
7364, 71, 72mpjaodan 788 . . . . . . . 8  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  (/) )  ->  x  e.  { A ,  B } )
74 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  1o )  ->  (
f `  x )  =  1o )
75 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  1o )  ->  (
f `  B )  =  1o )
7674, 75eqtr4d 2200 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  1o )  ->  (
f `  x )  =  ( f `  B ) )
7715ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  1o )  ->  (
( f `  x
)  =  ( f `
 B )  <->  x  =  B ) )
7876, 77mpbid 146 . . . . . . . . 9  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  1o )  ->  x  =  B )
7919ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  1o )  ->  B  e.  { A ,  B } )
8078, 79eqeltrd 2241 . . . . . . . 8  |-  ( ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  /\  (
f `  B )  =  1o )  ->  x  e.  { A ,  B } )
8157ad2antrr 480 . . . . . . . 8  |-  ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  ->  (
( f `  B
)  =  (/)  \/  (
f `  B )  =  1o ) )
8273, 80, 81mpjaodan 788 . . . . . . 7  |-  ( ( ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  /\  f : C
-1-1-onto-> 2o )  /\  x  e.  C )  /\  (
f `  x )  =  1o )  ->  x  e.  { A ,  B } )
8346ffvelrnda 5614 . . . . . . . 8  |-  ( ( ( ( ( C 
~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  ->  (
f `  x )  e.  2o )
84 elpri 3593 . . . . . . . . 9  |-  ( ( f `  x )  e.  { (/) ,  1o }  ->  ( ( f `
 x )  =  (/)  \/  ( f `  x )  =  1o ) )
8584, 49eleq2s 2259 . . . . . . . 8  |-  ( ( f `  x )  e.  2o  ->  (
( f `  x
)  =  (/)  \/  (
f `  x )  =  1o ) )
8683, 85syl 14 . . . . . . 7  |-  ( ( ( ( ( C 
~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  ->  (
( f `  x
)  =  (/)  \/  (
f `  x )  =  1o ) )
8759, 82, 86mpjaodan 788 . . . . . 6  |-  ( ( ( ( ( C 
~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  /\  x  e.  C )  ->  x  e.  { A ,  B } )
8887ex 114 . . . . 5  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  (
x  e.  C  ->  x  e.  { A ,  B } ) )
8988ssrdv 3143 . . . 4  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  C  C_ 
{ A ,  B } )
90 prssi 3725 . . . . 5  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
9125, 12, 90syl2anc 409 . . . 4  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  { A ,  B }  C_  C
)
9289, 91eqssd 3154 . . 3  |-  ( ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C
)  /\  A  =/=  B )  /\  f : C -1-1-onto-> 2o )  ->  C  =  { A ,  B } )
934, 92exlimddv 1885 . 2  |-  ( ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  /\  A  =/=  B
)  ->  C  =  { A ,  B }
)
9493ex 114 1  |-  ( ( C  ~~  2o  /\  A  e.  C  /\  B  e.  C )  ->  ( A  =/=  B  ->  C  =  { A ,  B } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 967    = wceq 1342   E.wex 1479    e. wcel 2135    =/= wne 2334    C_ wss 3111   (/)c0 3404   {cpr 3571   class class class wbr 3976   -->wf 5178   -1-1->wf1 5179   -1-1-onto->wf1o 5181   ` cfv 5182   1oc1o 6368   2oc2o 6369    ~~ cen 6695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-suc 4343  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-1o 6375  df-2o 6376  df-en 6698
This theorem is referenced by:  exmidpw  6865  en2eleq  7142  isprm2lem  12027
  Copyright terms: Public domain W3C validator