| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxaddlem | Unicode version | ||
| Description: Lemma for xrmaxadd 11657. The case where |
| Ref | Expression |
|---|---|
| xrmaxaddlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri3 9949 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | rexr 8148 |
. . 3
| |
| 4 | simp1 1000 |
. . . 4
| |
| 5 | simp2 1001 |
. . . . 5
| |
| 6 | simp3 1002 |
. . . . 5
| |
| 7 | xrmaxcl 11648 |
. . . . 5
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . 4
|
| 9 | 4, 8 | xaddcld 10036 |
. . 3
|
| 10 | 3, 9 | syl3an1 1283 |
. 2
|
| 11 | elpri 3661 |
. . . . 5
| |
| 12 | simpr 110 |
. . . . . . 7
| |
| 13 | xrmax1sup 11649 |
. . . . . . . . . 10
| |
| 14 | 5, 6, 13 | syl2anc 411 |
. . . . . . . . 9
|
| 15 | xleadd2a 10026 |
. . . . . . . . 9
| |
| 16 | 5, 8, 4, 14, 15 | syl31anc 1253 |
. . . . . . . 8
|
| 17 | 16 | adantr 276 |
. . . . . . 7
|
| 18 | 12, 17 | eqbrtrd 4076 |
. . . . . 6
|
| 19 | simpr 110 |
. . . . . . 7
| |
| 20 | xrmax2sup 11650 |
. . . . . . . . . 10
| |
| 21 | 5, 6, 20 | syl2anc 411 |
. . . . . . . . 9
|
| 22 | xleadd2a 10026 |
. . . . . . . . 9
| |
| 23 | 6, 8, 4, 21, 22 | syl31anc 1253 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | 19, 24 | eqbrtrd 4076 |
. . . . . 6
|
| 26 | 18, 25 | jaodan 799 |
. . . . 5
|
| 27 | 11, 26 | sylan2 286 |
. . . 4
|
| 28 | 4, 5 | xaddcld 10036 |
. . . . . . . . 9
|
| 29 | 28 | adantr 276 |
. . . . . . . 8
|
| 30 | 12, 29 | eqeltrd 2283 |
. . . . . . 7
|
| 31 | 4, 6 | xaddcld 10036 |
. . . . . . . . 9
|
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | 19, 32 | eqeltrd 2283 |
. . . . . . 7
|
| 34 | 30, 33 | jaodan 799 |
. . . . . 6
|
| 35 | 11, 34 | sylan2 286 |
. . . . 5
|
| 36 | 9 | adantr 276 |
. . . . 5
|
| 37 | xrlenlt 8167 |
. . . . 5
| |
| 38 | 35, 36, 37 | syl2anc 411 |
. . . 4
|
| 39 | 27, 38 | mpbid 147 |
. . 3
|
| 40 | 3, 39 | syl3anl1 1298 |
. 2
|
| 41 | 3 | 3ad2ant1 1021 |
. . . . . . . 8
|
| 42 | 41 | adantr 276 |
. . . . . . 7
|
| 43 | 42 | adantr 276 |
. . . . . 6
|
| 44 | simpl2 1004 |
. . . . . . 7
| |
| 45 | 44 | adantr 276 |
. . . . . 6
|
| 46 | 43, 45 | xaddcld 10036 |
. . . . 5
|
| 47 | prid1g 3742 |
. . . . 5
| |
| 48 | 46, 47 | syl 14 |
. . . 4
|
| 49 | simpr 110 |
. . . . . 6
| |
| 50 | simprl 529 |
. . . . . . . . 9
| |
| 51 | 42 | xnegcld 10007 |
. . . . . . . . 9
|
| 52 | 50, 51 | xaddcld 10036 |
. . . . . . . 8
|
| 53 | 52 | adantr 276 |
. . . . . . 7
|
| 54 | simpl1 1003 |
. . . . . . . 8
| |
| 55 | 54 | adantr 276 |
. . . . . . 7
|
| 56 | xltadd1 10028 |
. . . . . . 7
| |
| 57 | 53, 45, 55, 56 | syl3anc 1250 |
. . . . . 6
|
| 58 | 49, 57 | mpbid 147 |
. . . . 5
|
| 59 | xnpcan 10024 |
. . . . . . 7
| |
| 60 | 50, 54, 59 | syl2anc 411 |
. . . . . 6
|
| 61 | 60 | adantr 276 |
. . . . 5
|
| 62 | xaddcom 10013 |
. . . . . 6
| |
| 63 | 45, 43, 62 | syl2anc 411 |
. . . . 5
|
| 64 | 58, 61, 63 | 3brtr3d 4085 |
. . . 4
|
| 65 | breq2 4058 |
. . . . 5
| |
| 66 | 65 | rspcev 2881 |
. . . 4
|
| 67 | 48, 64, 66 | syl2anc 411 |
. . 3
|
| 68 | 54 | adantr 276 |
. . . . . . 7
|
| 69 | 68, 3 | syl 14 |
. . . . . 6
|
| 70 | simpl3 1005 |
. . . . . . 7
| |
| 71 | 70 | adantr 276 |
. . . . . 6
|
| 72 | 69, 71 | xaddcld 10036 |
. . . . 5
|
| 73 | prid2g 3743 |
. . . . 5
| |
| 74 | 72, 73 | syl 14 |
. . . 4
|
| 75 | simpr 110 |
. . . . . 6
| |
| 76 | 52 | adantr 276 |
. . . . . . 7
|
| 77 | xltadd1 10028 |
. . . . . . 7
| |
| 78 | 76, 71, 68, 77 | syl3anc 1250 |
. . . . . 6
|
| 79 | 75, 78 | mpbid 147 |
. . . . 5
|
| 80 | 60 | adantr 276 |
. . . . 5
|
| 81 | xaddcom 10013 |
. . . . . 6
| |
| 82 | 71, 69, 81 | syl2anc 411 |
. . . . 5
|
| 83 | 79, 80, 82 | 3brtr3d 4085 |
. . . 4
|
| 84 | breq2 4058 |
. . . . 5
| |
| 85 | 84 | rspcev 2881 |
. . . 4
|
| 86 | 74, 83, 85 | syl2anc 411 |
. . 3
|
| 87 | simprr 531 |
. . . . . . 7
| |
| 88 | 10 | adantr 276 |
. . . . . . . 8
|
| 89 | rexneg 9982 |
. . . . . . . . . . 11
| |
| 90 | 89 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 91 | 90 | adantr 276 |
. . . . . . . . 9
|
| 92 | 54 | renegcld 8482 |
. . . . . . . . 9
|
| 93 | 91, 92 | eqeltrd 2283 |
. . . . . . . 8
|
| 94 | xltadd1 10028 |
. . . . . . . 8
| |
| 95 | 50, 88, 93, 94 | syl3anc 1250 |
. . . . . . 7
|
| 96 | 87, 95 | mpbid 147 |
. . . . . 6
|
| 97 | 3, 8 | syl3an1 1283 |
. . . . . . . . 9
|
| 98 | 97 | adantr 276 |
. . . . . . . 8
|
| 99 | xaddcom 10013 |
. . . . . . . 8
| |
| 100 | 42, 98, 99 | syl2anc 411 |
. . . . . . 7
|
| 101 | 100 | oveq1d 5977 |
. . . . . 6
|
| 102 | 96, 101 | breqtrd 4080 |
. . . . 5
|
| 103 | xpncan 10023 |
. . . . . 6
| |
| 104 | 98, 54, 103 | syl2anc 411 |
. . . . 5
|
| 105 | 102, 104 | breqtrd 4080 |
. . . 4
|
| 106 | xrltmaxsup 11653 |
. . . . 5
| |
| 107 | 44, 70, 52, 106 | syl3anc 1250 |
. . . 4
|
| 108 | 105, 107 | mpbid 147 |
. . 3
|
| 109 | 67, 86, 108 | mpjaodan 800 |
. 2
|
| 110 | 2, 10, 40, 109 | eqsuptid 7120 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-sup 7107 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-rp 9806 df-xneg 9924 df-xadd 9925 df-seqfrec 10625 df-exp 10716 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 |
| This theorem is referenced by: xrmaxadd 11657 |
| Copyright terms: Public domain | W3C validator |