ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxaddlem Unicode version

Theorem xrmaxaddlem 11513
Description: Lemma for xrmaxadd 11514. The case where  A is real. (Contributed by Jim Kingdon, 11-May-2023.)
Assertion
Ref Expression
xrmaxaddlem  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )

Proof of Theorem xrmaxaddlem
Dummy variables  f  g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 9918 . . 3  |-  ( ( f  e.  RR*  /\  g  e.  RR* )  ->  (
f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
21adantl 277 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
f  e.  RR*  /\  g  e.  RR* ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 rexr 8117 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
4 simp1 999 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
5 simp2 1000 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
6 simp3 1001 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  C  e.  RR* )
7 xrmaxcl 11505 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
85, 6, 7syl2anc 411 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
94, 8xaddcld 10005 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  e.  RR* )
103, 9syl3an1 1282 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  e.  RR* )
11 elpri 3655 . . . . 5  |-  ( x  e.  { ( A +e B ) ,  ( A +e C ) }  ->  ( x  =  ( A +e
B )  \/  x  =  ( A +e C ) ) )
12 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e B ) )  ->  x  =  ( A +e B ) )
13 xrmax1sup 11506 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  B  <_  sup ( { B ,  C } ,  RR* ,  <  ) )
145, 6, 13syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  <_  sup ( { B ,  C } ,  RR* ,  <  ) )
15 xleadd2a 9995 . . . . . . . . 9  |-  ( ( ( B  e.  RR*  /\ 
sup ( { B ,  C } ,  RR* ,  <  )  e.  RR*  /\  A  e.  RR* )  /\  B  <_  sup ( { B ,  C } ,  RR* ,  <  )
)  ->  ( A +e B )  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
165, 8, 4, 14, 15syl31anc 1252 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e B )  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
1716adantr 276 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e B ) )  ->  ( A +e B )  <_ 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
1812, 17eqbrtrd 4065 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e B ) )  ->  x  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
) )
19 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e C ) )  ->  x  =  ( A +e C ) )
20 xrmax2sup 11507 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  C  <_  sup ( { B ,  C } ,  RR* ,  <  ) )
215, 6, 20syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  C  <_  sup ( { B ,  C } ,  RR* ,  <  ) )
22 xleadd2a 9995 . . . . . . . . 9  |-  ( ( ( C  e.  RR*  /\ 
sup ( { B ,  C } ,  RR* ,  <  )  e.  RR*  /\  A  e.  RR* )  /\  C  <_  sup ( { B ,  C } ,  RR* ,  <  )
)  ->  ( A +e C )  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
236, 8, 4, 21, 22syl31anc 1252 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e C )  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
2423adantr 276 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e C ) )  ->  ( A +e C )  <_ 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
2519, 24eqbrtrd 4065 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e C ) )  ->  x  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
) )
2618, 25jaodan 798 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  =  ( A +e B )  \/  x  =  ( A +e C ) ) )  ->  x  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
2711, 26sylan2 286 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  x  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
) )
284, 5xaddcld 10005 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e B )  e.  RR* )
2928adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e B ) )  ->  ( A +e B )  e. 
RR* )
3012, 29eqeltrd 2281 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e B ) )  ->  x  e.  RR* )
314, 6xaddcld 10005 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e C )  e.  RR* )
3231adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e C ) )  ->  ( A +e C )  e. 
RR* )
3319, 32eqeltrd 2281 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e C ) )  ->  x  e.  RR* )
3430, 33jaodan 798 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  =  ( A +e B )  \/  x  =  ( A +e C ) ) )  ->  x  e.  RR* )
3511, 34sylan2 286 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  x  e.  RR* )
369adantr 276 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  e. 
RR* )
37 xrlenlt 8136 . . . . 5  |-  ( ( x  e.  RR*  /\  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  e.  RR* )  ->  ( x  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <->  -.  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <  x )
)
3835, 36, 37syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  ( x  <_ 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  <->  -.  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <  x )
)
3927, 38mpbid 147 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  -.  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <  x )
403, 39syl3anl1 1297 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  -.  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <  x )
4133ad2ant1 1020 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  A  e.  RR* )
4241adantr 276 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  A  e.  RR* )
4342adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  A  e.  RR* )
44 simpl2 1003 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  B  e.  RR* )
4544adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  B  e.  RR* )
4643, 45xaddcld 10005 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  ( A +e B )  e.  RR* )
47 prid1g 3736 . . . . 5  |-  ( ( A +e B )  e.  RR*  ->  ( A +e B )  e.  { ( A +e B ) ,  ( A +e C ) } )
4846, 47syl 14 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  ( A +e B )  e.  { ( A +e B ) ,  ( A +e C ) } )
49 simpr 110 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  (
x +e  -e A )  < 
B )
50 simprl 529 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  x  e.  RR* )
5142xnegcld 9976 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  -e A  e.  RR* )
5250, 51xaddcld 10005 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( x +e  -e A )  e. 
RR* )
5352adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  (
x +e  -e A )  e. 
RR* )
54 simpl1 1002 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  A  e.  RR )
5554adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  A  e.  RR )
56 xltadd1 9997 . . . . . . 7  |-  ( ( ( x +e  -e A )  e. 
RR*  /\  B  e.  RR* 
/\  A  e.  RR )  ->  ( ( x +e  -e
A )  <  B  <->  ( ( x +e  -e A ) +e A )  < 
( B +e
A ) ) )
5753, 45, 55, 56syl3anc 1249 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  (
( x +e  -e A )  < 
B  <->  ( ( x +e  -e
A ) +e
A )  <  ( B +e A ) ) )
5849, 57mpbid 147 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  (
( x +e  -e A ) +e A )  < 
( B +e
A ) )
59 xnpcan 9993 . . . . . . 7  |-  ( ( x  e.  RR*  /\  A  e.  RR )  ->  (
( x +e  -e A ) +e A )  =  x )
6050, 54, 59syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( ( x +e  -e A ) +e A )  =  x )
6160adantr 276 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  (
( x +e  -e A ) +e A )  =  x )
62 xaddcom 9982 . . . . . 6  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B +e A )  =  ( A +e B ) )
6345, 43, 62syl2anc 411 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  ( B +e A )  =  ( A +e B ) )
6458, 61, 633brtr3d 4074 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  x  <  ( A +e
B ) )
65 breq2 4047 . . . . 5  |-  ( y  =  ( A +e B )  -> 
( x  <  y  <->  x  <  ( A +e B ) ) )
6665rspcev 2876 . . . 4  |-  ( ( ( A +e
B )  e.  {
( A +e
B ) ,  ( A +e C ) }  /\  x  <  ( A +e
B ) )  ->  E. y  e.  { ( A +e B ) ,  ( A +e C ) } x  <  y
)
6748, 64, 66syl2anc 411 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  E. y  e.  { ( A +e B ) ,  ( A +e
C ) } x  <  y )
6854adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  A  e.  RR )
6968, 3syl 14 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  A  e.  RR* )
70 simpl3 1004 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  C  e.  RR* )
7170adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  C  e.  RR* )
7269, 71xaddcld 10005 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  ( A +e C )  e.  RR* )
73 prid2g 3737 . . . . 5  |-  ( ( A +e C )  e.  RR*  ->  ( A +e C )  e.  { ( A +e B ) ,  ( A +e C ) } )
7472, 73syl 14 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  ( A +e C )  e.  { ( A +e B ) ,  ( A +e C ) } )
75 simpr 110 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  (
x +e  -e A )  < 
C )
7652adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  (
x +e  -e A )  e. 
RR* )
77 xltadd1 9997 . . . . . . 7  |-  ( ( ( x +e  -e A )  e. 
RR*  /\  C  e.  RR* 
/\  A  e.  RR )  ->  ( ( x +e  -e
A )  <  C  <->  ( ( x +e  -e A ) +e A )  < 
( C +e
A ) ) )
7876, 71, 68, 77syl3anc 1249 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  (
( x +e  -e A )  < 
C  <->  ( ( x +e  -e
A ) +e
A )  <  ( C +e A ) ) )
7975, 78mpbid 147 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  (
( x +e  -e A ) +e A )  < 
( C +e
A ) )
8060adantr 276 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  (
( x +e  -e A ) +e A )  =  x )
81 xaddcom 9982 . . . . . 6  |-  ( ( C  e.  RR*  /\  A  e.  RR* )  ->  ( C +e A )  =  ( A +e C ) )
8271, 69, 81syl2anc 411 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  ( C +e A )  =  ( A +e C ) )
8379, 80, 823brtr3d 4074 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  x  <  ( A +e
C ) )
84 breq2 4047 . . . . 5  |-  ( y  =  ( A +e C )  -> 
( x  <  y  <->  x  <  ( A +e C ) ) )
8584rspcev 2876 . . . 4  |-  ( ( ( A +e
C )  e.  {
( A +e
B ) ,  ( A +e C ) }  /\  x  <  ( A +e
C ) )  ->  E. y  e.  { ( A +e B ) ,  ( A +e C ) } x  <  y
)
8674, 83, 85syl2anc 411 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  E. y  e.  { ( A +e B ) ,  ( A +e
C ) } x  <  y )
87 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
8810adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  e.  RR* )
89 rexneg 9951 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
90893ad2ant1 1020 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  -e
A  =  -u A
)
9190adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  -e A  =  -u A )
9254renegcld 8451 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  -u A  e.  RR )
9391, 92eqeltrd 2281 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  -e A  e.  RR )
94 xltadd1 9997 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  e.  RR*  /\  -e
A  e.  RR )  ->  ( x  < 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  <->  ( x +e  -e A )  <  ( ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) +e  -e A ) ) )
9550, 88, 93, 94syl3anc 1249 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <->  ( x +e  -e A )  <  ( ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) +e  -e A ) ) )
9687, 95mpbid 147 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( x +e  -e A )  < 
( ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) +e  -e A ) )
973, 8syl3an1 1282 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
9897adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
99 xaddcom 9982 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  =  ( sup ( { B ,  C } ,  RR* ,  <  ) +e A ) )
10042, 98, 99syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  =  ( sup ( { B ,  C } ,  RR* ,  <  ) +e A ) )
101100oveq1d 5958 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) +e  -e A )  =  ( ( sup ( { B ,  C } ,  RR* ,  <  ) +e
A ) +e  -e A ) )
10296, 101breqtrd 4069 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( x +e  -e A )  < 
( ( sup ( { B ,  C } ,  RR* ,  <  ) +e A ) +e  -e
A ) )
103 xpncan 9992 . . . . . 6  |-  ( ( sup ( { B ,  C } ,  RR* ,  <  )  e.  RR*  /\  A  e.  RR )  ->  ( ( sup ( { B ,  C } ,  RR* ,  <  ) +e A ) +e  -e
A )  =  sup ( { B ,  C } ,  RR* ,  <  ) )
10498, 54, 103syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( ( sup ( { B ,  C } ,  RR* ,  <  ) +e A ) +e  -e
A )  =  sup ( { B ,  C } ,  RR* ,  <  ) )
105102, 104breqtrd 4069 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( x +e  -e A )  <  sup ( { B ,  C } ,  RR* ,  <  ) )
106 xrltmaxsup 11510 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  ( x +e  -e
A )  e.  RR* )  ->  ( ( x +e  -e
A )  <  sup ( { B ,  C } ,  RR* ,  <  )  <-> 
( ( x +e  -e A )  <  B  \/  ( x +e  -e A )  < 
C ) ) )
10744, 70, 52, 106syl3anc 1249 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( ( x +e  -e A )  <  sup ( { B ,  C } ,  RR* ,  <  )  <->  ( ( x +e  -e A )  < 
B  \/  ( x +e  -e
A )  <  C
) ) )
108105, 107mpbid 147 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( ( x +e  -e A )  <  B  \/  ( x +e  -e A )  < 
C ) )
10967, 86, 108mpjaodan 799 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  E. y  e.  { ( A +e B ) ,  ( A +e C ) } x  <  y
)
1102, 10, 40, 109eqsuptid 7098 1  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1372    e. wcel 2175   E.wrex 2484   {cpr 3633   class class class wbr 4043  (class class class)co 5943   supcsup 7083   RRcr 7923   RR*cxr 8105    < clt 8106    <_ cle 8107   -ucneg 8243    -ecxne 9890   +ecxad 9891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-sup 7085  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775  df-xneg 9893  df-xadd 9894  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252
This theorem is referenced by:  xrmaxadd  11514
  Copyright terms: Public domain W3C validator