Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrmaxaddlem | Unicode version |
Description: Lemma for xrmaxadd 11224. The case where is real. (Contributed by Jim Kingdon, 11-May-2023.) |
Ref | Expression |
---|---|
xrmaxaddlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlttri3 9754 | . . 3 | |
2 | 1 | adantl 275 | . 2 |
3 | rexr 7965 | . . 3 | |
4 | simp1 992 | . . . 4 | |
5 | simp2 993 | . . . . 5 | |
6 | simp3 994 | . . . . 5 | |
7 | xrmaxcl 11215 | . . . . 5 | |
8 | 5, 6, 7 | syl2anc 409 | . . . 4 |
9 | 4, 8 | xaddcld 9841 | . . 3 |
10 | 3, 9 | syl3an1 1266 | . 2 |
11 | elpri 3606 | . . . . 5 | |
12 | simpr 109 | . . . . . . 7 | |
13 | xrmax1sup 11216 | . . . . . . . . . 10 | |
14 | 5, 6, 13 | syl2anc 409 | . . . . . . . . 9 |
15 | xleadd2a 9831 | . . . . . . . . 9 | |
16 | 5, 8, 4, 14, 15 | syl31anc 1236 | . . . . . . . 8 |
17 | 16 | adantr 274 | . . . . . . 7 |
18 | 12, 17 | eqbrtrd 4011 | . . . . . 6 |
19 | simpr 109 | . . . . . . 7 | |
20 | xrmax2sup 11217 | . . . . . . . . . 10 | |
21 | 5, 6, 20 | syl2anc 409 | . . . . . . . . 9 |
22 | xleadd2a 9831 | . . . . . . . . 9 | |
23 | 6, 8, 4, 21, 22 | syl31anc 1236 | . . . . . . . 8 |
24 | 23 | adantr 274 | . . . . . . 7 |
25 | 19, 24 | eqbrtrd 4011 | . . . . . 6 |
26 | 18, 25 | jaodan 792 | . . . . 5 |
27 | 11, 26 | sylan2 284 | . . . 4 |
28 | 4, 5 | xaddcld 9841 | . . . . . . . . 9 |
29 | 28 | adantr 274 | . . . . . . . 8 |
30 | 12, 29 | eqeltrd 2247 | . . . . . . 7 |
31 | 4, 6 | xaddcld 9841 | . . . . . . . . 9 |
32 | 31 | adantr 274 | . . . . . . . 8 |
33 | 19, 32 | eqeltrd 2247 | . . . . . . 7 |
34 | 30, 33 | jaodan 792 | . . . . . 6 |
35 | 11, 34 | sylan2 284 | . . . . 5 |
36 | 9 | adantr 274 | . . . . 5 |
37 | xrlenlt 7984 | . . . . 5 | |
38 | 35, 36, 37 | syl2anc 409 | . . . 4 |
39 | 27, 38 | mpbid 146 | . . 3 |
40 | 3, 39 | syl3anl1 1281 | . 2 |
41 | 3 | 3ad2ant1 1013 | . . . . . . . 8 |
42 | 41 | adantr 274 | . . . . . . 7 |
43 | 42 | adantr 274 | . . . . . 6 |
44 | simpl2 996 | . . . . . . 7 | |
45 | 44 | adantr 274 | . . . . . 6 |
46 | 43, 45 | xaddcld 9841 | . . . . 5 |
47 | prid1g 3687 | . . . . 5 | |
48 | 46, 47 | syl 14 | . . . 4 |
49 | simpr 109 | . . . . . 6 | |
50 | simprl 526 | . . . . . . . . 9 | |
51 | 42 | xnegcld 9812 | . . . . . . . . 9 |
52 | 50, 51 | xaddcld 9841 | . . . . . . . 8 |
53 | 52 | adantr 274 | . . . . . . 7 |
54 | simpl1 995 | . . . . . . . 8 | |
55 | 54 | adantr 274 | . . . . . . 7 |
56 | xltadd1 9833 | . . . . . . 7 | |
57 | 53, 45, 55, 56 | syl3anc 1233 | . . . . . 6 |
58 | 49, 57 | mpbid 146 | . . . . 5 |
59 | xnpcan 9829 | . . . . . . 7 | |
60 | 50, 54, 59 | syl2anc 409 | . . . . . 6 |
61 | 60 | adantr 274 | . . . . 5 |
62 | xaddcom 9818 | . . . . . 6 | |
63 | 45, 43, 62 | syl2anc 409 | . . . . 5 |
64 | 58, 61, 63 | 3brtr3d 4020 | . . . 4 |
65 | breq2 3993 | . . . . 5 | |
66 | 65 | rspcev 2834 | . . . 4 |
67 | 48, 64, 66 | syl2anc 409 | . . 3 |
68 | 54 | adantr 274 | . . . . . . 7 |
69 | 68, 3 | syl 14 | . . . . . 6 |
70 | simpl3 997 | . . . . . . 7 | |
71 | 70 | adantr 274 | . . . . . 6 |
72 | 69, 71 | xaddcld 9841 | . . . . 5 |
73 | prid2g 3688 | . . . . 5 | |
74 | 72, 73 | syl 14 | . . . 4 |
75 | simpr 109 | . . . . . 6 | |
76 | 52 | adantr 274 | . . . . . . 7 |
77 | xltadd1 9833 | . . . . . . 7 | |
78 | 76, 71, 68, 77 | syl3anc 1233 | . . . . . 6 |
79 | 75, 78 | mpbid 146 | . . . . 5 |
80 | 60 | adantr 274 | . . . . 5 |
81 | xaddcom 9818 | . . . . . 6 | |
82 | 71, 69, 81 | syl2anc 409 | . . . . 5 |
83 | 79, 80, 82 | 3brtr3d 4020 | . . . 4 |
84 | breq2 3993 | . . . . 5 | |
85 | 84 | rspcev 2834 | . . . 4 |
86 | 74, 83, 85 | syl2anc 409 | . . 3 |
87 | simprr 527 | . . . . . . 7 | |
88 | 10 | adantr 274 | . . . . . . . 8 |
89 | rexneg 9787 | . . . . . . . . . . 11 | |
90 | 89 | 3ad2ant1 1013 | . . . . . . . . . 10 |
91 | 90 | adantr 274 | . . . . . . . . 9 |
92 | 54 | renegcld 8299 | . . . . . . . . 9 |
93 | 91, 92 | eqeltrd 2247 | . . . . . . . 8 |
94 | xltadd1 9833 | . . . . . . . 8 | |
95 | 50, 88, 93, 94 | syl3anc 1233 | . . . . . . 7 |
96 | 87, 95 | mpbid 146 | . . . . . 6 |
97 | 3, 8 | syl3an1 1266 | . . . . . . . . 9 |
98 | 97 | adantr 274 | . . . . . . . 8 |
99 | xaddcom 9818 | . . . . . . . 8 | |
100 | 42, 98, 99 | syl2anc 409 | . . . . . . 7 |
101 | 100 | oveq1d 5868 | . . . . . 6 |
102 | 96, 101 | breqtrd 4015 | . . . . 5 |
103 | xpncan 9828 | . . . . . 6 | |
104 | 98, 54, 103 | syl2anc 409 | . . . . 5 |
105 | 102, 104 | breqtrd 4015 | . . . 4 |
106 | xrltmaxsup 11220 | . . . . 5 | |
107 | 44, 70, 52, 106 | syl3anc 1233 | . . . 4 |
108 | 105, 107 | mpbid 146 | . . 3 |
109 | 67, 86, 108 | mpjaodan 793 | . 2 |
110 | 2, 10, 40, 109 | eqsuptid 6974 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 wrex 2449 cpr 3584 class class class wbr 3989 (class class class)co 5853 csup 6959 cr 7773 cxr 7953 clt 7954 cle 7955 cneg 8091 cxne 9726 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-xneg 9729 df-xadd 9730 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 |
This theorem is referenced by: xrmaxadd 11224 |
Copyright terms: Public domain | W3C validator |