ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxaddlem Unicode version

Theorem xrmaxaddlem 11210
Description: Lemma for xrmaxadd 11211. The case where  A is real. (Contributed by Jim Kingdon, 11-May-2023.)
Assertion
Ref Expression
xrmaxaddlem  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )

Proof of Theorem xrmaxaddlem
Dummy variables  f  g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 9741 . . 3  |-  ( ( f  e.  RR*  /\  g  e.  RR* )  ->  (
f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
21adantl 275 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
f  e.  RR*  /\  g  e.  RR* ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 rexr 7952 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
4 simp1 992 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
5 simp2 993 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
6 simp3 994 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  C  e.  RR* )
7 xrmaxcl 11202 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
85, 6, 7syl2anc 409 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
94, 8xaddcld 9828 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  e.  RR* )
103, 9syl3an1 1266 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  e.  RR* )
11 elpri 3604 . . . . 5  |-  ( x  e.  { ( A +e B ) ,  ( A +e C ) }  ->  ( x  =  ( A +e
B )  \/  x  =  ( A +e C ) ) )
12 simpr 109 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e B ) )  ->  x  =  ( A +e B ) )
13 xrmax1sup 11203 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  B  <_  sup ( { B ,  C } ,  RR* ,  <  ) )
145, 6, 13syl2anc 409 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  <_  sup ( { B ,  C } ,  RR* ,  <  ) )
15 xleadd2a 9818 . . . . . . . . 9  |-  ( ( ( B  e.  RR*  /\ 
sup ( { B ,  C } ,  RR* ,  <  )  e.  RR*  /\  A  e.  RR* )  /\  B  <_  sup ( { B ,  C } ,  RR* ,  <  )
)  ->  ( A +e B )  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
165, 8, 4, 14, 15syl31anc 1236 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e B )  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
1716adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e B ) )  ->  ( A +e B )  <_ 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
1812, 17eqbrtrd 4009 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e B ) )  ->  x  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
) )
19 simpr 109 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e C ) )  ->  x  =  ( A +e C ) )
20 xrmax2sup 11204 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  C  <_  sup ( { B ,  C } ,  RR* ,  <  ) )
215, 6, 20syl2anc 409 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  C  <_  sup ( { B ,  C } ,  RR* ,  <  ) )
22 xleadd2a 9818 . . . . . . . . 9  |-  ( ( ( C  e.  RR*  /\ 
sup ( { B ,  C } ,  RR* ,  <  )  e.  RR*  /\  A  e.  RR* )  /\  C  <_  sup ( { B ,  C } ,  RR* ,  <  )
)  ->  ( A +e C )  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
236, 8, 4, 21, 22syl31anc 1236 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e C )  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
2423adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e C ) )  ->  ( A +e C )  <_ 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
2519, 24eqbrtrd 4009 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e C ) )  ->  x  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
) )
2618, 25jaodan 792 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  =  ( A +e B )  \/  x  =  ( A +e C ) ) )  ->  x  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
2711, 26sylan2 284 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  x  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
) )
284, 5xaddcld 9828 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e B )  e.  RR* )
2928adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e B ) )  ->  ( A +e B )  e. 
RR* )
3012, 29eqeltrd 2247 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e B ) )  ->  x  e.  RR* )
314, 6xaddcld 9828 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e C )  e.  RR* )
3231adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e C ) )  ->  ( A +e C )  e. 
RR* )
3319, 32eqeltrd 2247 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  =  ( A +e C ) )  ->  x  e.  RR* )
3430, 33jaodan 792 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  =  ( A +e B )  \/  x  =  ( A +e C ) ) )  ->  x  e.  RR* )
3511, 34sylan2 284 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  x  e.  RR* )
369adantr 274 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  e. 
RR* )
37 xrlenlt 7971 . . . . 5  |-  ( ( x  e.  RR*  /\  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  e.  RR* )  ->  ( x  <_  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <->  -.  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <  x )
)
3835, 36, 37syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  ( x  <_ 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  <->  -.  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <  x )
)
3927, 38mpbid 146 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  -.  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <  x )
403, 39syl3anl1 1281 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  { ( A +e B ) ,  ( A +e
C ) } )  ->  -.  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <  x )
4133ad2ant1 1013 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  A  e.  RR* )
4241adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  A  e.  RR* )
4342adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  A  e.  RR* )
44 simpl2 996 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  B  e.  RR* )
4544adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  B  e.  RR* )
4643, 45xaddcld 9828 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  ( A +e B )  e.  RR* )
47 prid1g 3685 . . . . 5  |-  ( ( A +e B )  e.  RR*  ->  ( A +e B )  e.  { ( A +e B ) ,  ( A +e C ) } )
4846, 47syl 14 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  ( A +e B )  e.  { ( A +e B ) ,  ( A +e C ) } )
49 simpr 109 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  (
x +e  -e A )  < 
B )
50 simprl 526 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  x  e.  RR* )
5142xnegcld 9799 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  -e A  e.  RR* )
5250, 51xaddcld 9828 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( x +e  -e A )  e. 
RR* )
5352adantr 274 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  (
x +e  -e A )  e. 
RR* )
54 simpl1 995 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  A  e.  RR )
5554adantr 274 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  A  e.  RR )
56 xltadd1 9820 . . . . . . 7  |-  ( ( ( x +e  -e A )  e. 
RR*  /\  B  e.  RR* 
/\  A  e.  RR )  ->  ( ( x +e  -e
A )  <  B  <->  ( ( x +e  -e A ) +e A )  < 
( B +e
A ) ) )
5753, 45, 55, 56syl3anc 1233 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  (
( x +e  -e A )  < 
B  <->  ( ( x +e  -e
A ) +e
A )  <  ( B +e A ) ) )
5849, 57mpbid 146 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  (
( x +e  -e A ) +e A )  < 
( B +e
A ) )
59 xnpcan 9816 . . . . . . 7  |-  ( ( x  e.  RR*  /\  A  e.  RR )  ->  (
( x +e  -e A ) +e A )  =  x )
6050, 54, 59syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( ( x +e  -e A ) +e A )  =  x )
6160adantr 274 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  (
( x +e  -e A ) +e A )  =  x )
62 xaddcom 9805 . . . . . 6  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B +e A )  =  ( A +e B ) )
6345, 43, 62syl2anc 409 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  ( B +e A )  =  ( A +e B ) )
6458, 61, 633brtr3d 4018 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  x  <  ( A +e
B ) )
65 breq2 3991 . . . . 5  |-  ( y  =  ( A +e B )  -> 
( x  <  y  <->  x  <  ( A +e B ) ) )
6665rspcev 2834 . . . 4  |-  ( ( ( A +e
B )  e.  {
( A +e
B ) ,  ( A +e C ) }  /\  x  <  ( A +e
B ) )  ->  E. y  e.  { ( A +e B ) ,  ( A +e C ) } x  <  y
)
6748, 64, 66syl2anc 409 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
B )  ->  E. y  e.  { ( A +e B ) ,  ( A +e
C ) } x  <  y )
6854adantr 274 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  A  e.  RR )
6968, 3syl 14 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  A  e.  RR* )
70 simpl3 997 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  C  e.  RR* )
7170adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  C  e.  RR* )
7269, 71xaddcld 9828 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  ( A +e C )  e.  RR* )
73 prid2g 3686 . . . . 5  |-  ( ( A +e C )  e.  RR*  ->  ( A +e C )  e.  { ( A +e B ) ,  ( A +e C ) } )
7472, 73syl 14 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  ( A +e C )  e.  { ( A +e B ) ,  ( A +e C ) } )
75 simpr 109 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  (
x +e  -e A )  < 
C )
7652adantr 274 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  (
x +e  -e A )  e. 
RR* )
77 xltadd1 9820 . . . . . . 7  |-  ( ( ( x +e  -e A )  e. 
RR*  /\  C  e.  RR* 
/\  A  e.  RR )  ->  ( ( x +e  -e
A )  <  C  <->  ( ( x +e  -e A ) +e A )  < 
( C +e
A ) ) )
7876, 71, 68, 77syl3anc 1233 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  (
( x +e  -e A )  < 
C  <->  ( ( x +e  -e
A ) +e
A )  <  ( C +e A ) ) )
7975, 78mpbid 146 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  (
( x +e  -e A ) +e A )  < 
( C +e
A ) )
8060adantr 274 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  (
( x +e  -e A ) +e A )  =  x )
81 xaddcom 9805 . . . . . 6  |-  ( ( C  e.  RR*  /\  A  e.  RR* )  ->  ( C +e A )  =  ( A +e C ) )
8271, 69, 81syl2anc 409 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  ( C +e A )  =  ( A +e C ) )
8379, 80, 823brtr3d 4018 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  x  <  ( A +e
C ) )
84 breq2 3991 . . . . 5  |-  ( y  =  ( A +e C )  -> 
( x  <  y  <->  x  <  ( A +e C ) ) )
8584rspcev 2834 . . . 4  |-  ( ( ( A +e
C )  e.  {
( A +e
B ) ,  ( A +e C ) }  /\  x  <  ( A +e
C ) )  ->  E. y  e.  { ( A +e B ) ,  ( A +e C ) } x  <  y
)
8674, 83, 85syl2anc 409 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  /\  ( x +e  -e A )  < 
C )  ->  E. y  e.  { ( A +e B ) ,  ( A +e
C ) } x  <  y )
87 simprr 527 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
8810adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  e.  RR* )
89 rexneg 9774 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
90893ad2ant1 1013 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  -e
A  =  -u A
)
9190adantr 274 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  -e A  =  -u A )
9254renegcld 8286 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  -u A  e.  RR )
9391, 92eqeltrd 2247 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  -e A  e.  RR )
94 xltadd1 9820 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  e.  RR*  /\  -e
A  e.  RR )  ->  ( x  < 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  <->  ( x +e  -e A )  <  ( ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) +e  -e A ) ) )
9550, 88, 93, 94syl3anc 1233 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  <->  ( x +e  -e A )  <  ( ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) +e  -e A ) ) )
9687, 95mpbid 146 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( x +e  -e A )  < 
( ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) +e  -e A ) )
973, 8syl3an1 1266 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
9897adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
99 xaddcom 9805 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  =  ( sup ( { B ,  C } ,  RR* ,  <  ) +e A ) )
10042, 98, 99syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  =  ( sup ( { B ,  C } ,  RR* ,  <  ) +e A ) )
101100oveq1d 5865 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) +e  -e A )  =  ( ( sup ( { B ,  C } ,  RR* ,  <  ) +e
A ) +e  -e A ) )
10296, 101breqtrd 4013 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( x +e  -e A )  < 
( ( sup ( { B ,  C } ,  RR* ,  <  ) +e A ) +e  -e
A ) )
103 xpncan 9815 . . . . . 6  |-  ( ( sup ( { B ,  C } ,  RR* ,  <  )  e.  RR*  /\  A  e.  RR )  ->  ( ( sup ( { B ,  C } ,  RR* ,  <  ) +e A ) +e  -e
A )  =  sup ( { B ,  C } ,  RR* ,  <  ) )
10498, 54, 103syl2anc 409 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( ( sup ( { B ,  C } ,  RR* ,  <  ) +e A ) +e  -e
A )  =  sup ( { B ,  C } ,  RR* ,  <  ) )
105102, 104breqtrd 4013 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( x +e  -e A )  <  sup ( { B ,  C } ,  RR* ,  <  ) )
106 xrltmaxsup 11207 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  ( x +e  -e
A )  e.  RR* )  ->  ( ( x +e  -e
A )  <  sup ( { B ,  C } ,  RR* ,  <  )  <-> 
( ( x +e  -e A )  <  B  \/  ( x +e  -e A )  < 
C ) ) )
10744, 70, 52, 106syl3anc 1233 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( ( x +e  -e A )  <  sup ( { B ,  C } ,  RR* ,  <  )  <->  ( ( x +e  -e A )  < 
B  \/  ( x +e  -e
A )  <  C
) ) )
108105, 107mpbid 146 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  -> 
( ( x +e  -e A )  <  B  \/  ( x +e  -e A )  < 
C ) )
10967, 86, 108mpjaodan 793 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  RR*  /\  x  <  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) ) )  ->  E. y  e.  { ( A +e B ) ,  ( A +e C ) } x  <  y
)
1102, 10, 40, 109eqsuptid 6970 1  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449   {cpr 3582   class class class wbr 3987  (class class class)co 5850   supcsup 6955   RRcr 7760   RR*cxr 7940    < clt 7941    <_ cle 7942   -ucneg 8078    -ecxne 9713   +ecxad 9714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-sup 6957  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-rp 9598  df-xneg 9716  df-xadd 9717  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950
This theorem is referenced by:  xrmaxadd  11211
  Copyright terms: Public domain W3C validator