Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrmaxaddlem | Unicode version |
Description: Lemma for xrmaxadd 11211. The case where is real. (Contributed by Jim Kingdon, 11-May-2023.) |
Ref | Expression |
---|---|
xrmaxaddlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlttri3 9741 | . . 3 | |
2 | 1 | adantl 275 | . 2 |
3 | rexr 7952 | . . 3 | |
4 | simp1 992 | . . . 4 | |
5 | simp2 993 | . . . . 5 | |
6 | simp3 994 | . . . . 5 | |
7 | xrmaxcl 11202 | . . . . 5 | |
8 | 5, 6, 7 | syl2anc 409 | . . . 4 |
9 | 4, 8 | xaddcld 9828 | . . 3 |
10 | 3, 9 | syl3an1 1266 | . 2 |
11 | elpri 3604 | . . . . 5 | |
12 | simpr 109 | . . . . . . 7 | |
13 | xrmax1sup 11203 | . . . . . . . . . 10 | |
14 | 5, 6, 13 | syl2anc 409 | . . . . . . . . 9 |
15 | xleadd2a 9818 | . . . . . . . . 9 | |
16 | 5, 8, 4, 14, 15 | syl31anc 1236 | . . . . . . . 8 |
17 | 16 | adantr 274 | . . . . . . 7 |
18 | 12, 17 | eqbrtrd 4009 | . . . . . 6 |
19 | simpr 109 | . . . . . . 7 | |
20 | xrmax2sup 11204 | . . . . . . . . . 10 | |
21 | 5, 6, 20 | syl2anc 409 | . . . . . . . . 9 |
22 | xleadd2a 9818 | . . . . . . . . 9 | |
23 | 6, 8, 4, 21, 22 | syl31anc 1236 | . . . . . . . 8 |
24 | 23 | adantr 274 | . . . . . . 7 |
25 | 19, 24 | eqbrtrd 4009 | . . . . . 6 |
26 | 18, 25 | jaodan 792 | . . . . 5 |
27 | 11, 26 | sylan2 284 | . . . 4 |
28 | 4, 5 | xaddcld 9828 | . . . . . . . . 9 |
29 | 28 | adantr 274 | . . . . . . . 8 |
30 | 12, 29 | eqeltrd 2247 | . . . . . . 7 |
31 | 4, 6 | xaddcld 9828 | . . . . . . . . 9 |
32 | 31 | adantr 274 | . . . . . . . 8 |
33 | 19, 32 | eqeltrd 2247 | . . . . . . 7 |
34 | 30, 33 | jaodan 792 | . . . . . 6 |
35 | 11, 34 | sylan2 284 | . . . . 5 |
36 | 9 | adantr 274 | . . . . 5 |
37 | xrlenlt 7971 | . . . . 5 | |
38 | 35, 36, 37 | syl2anc 409 | . . . 4 |
39 | 27, 38 | mpbid 146 | . . 3 |
40 | 3, 39 | syl3anl1 1281 | . 2 |
41 | 3 | 3ad2ant1 1013 | . . . . . . . 8 |
42 | 41 | adantr 274 | . . . . . . 7 |
43 | 42 | adantr 274 | . . . . . 6 |
44 | simpl2 996 | . . . . . . 7 | |
45 | 44 | adantr 274 | . . . . . 6 |
46 | 43, 45 | xaddcld 9828 | . . . . 5 |
47 | prid1g 3685 | . . . . 5 | |
48 | 46, 47 | syl 14 | . . . 4 |
49 | simpr 109 | . . . . . 6 | |
50 | simprl 526 | . . . . . . . . 9 | |
51 | 42 | xnegcld 9799 | . . . . . . . . 9 |
52 | 50, 51 | xaddcld 9828 | . . . . . . . 8 |
53 | 52 | adantr 274 | . . . . . . 7 |
54 | simpl1 995 | . . . . . . . 8 | |
55 | 54 | adantr 274 | . . . . . . 7 |
56 | xltadd1 9820 | . . . . . . 7 | |
57 | 53, 45, 55, 56 | syl3anc 1233 | . . . . . 6 |
58 | 49, 57 | mpbid 146 | . . . . 5 |
59 | xnpcan 9816 | . . . . . . 7 | |
60 | 50, 54, 59 | syl2anc 409 | . . . . . 6 |
61 | 60 | adantr 274 | . . . . 5 |
62 | xaddcom 9805 | . . . . . 6 | |
63 | 45, 43, 62 | syl2anc 409 | . . . . 5 |
64 | 58, 61, 63 | 3brtr3d 4018 | . . . 4 |
65 | breq2 3991 | . . . . 5 | |
66 | 65 | rspcev 2834 | . . . 4 |
67 | 48, 64, 66 | syl2anc 409 | . . 3 |
68 | 54 | adantr 274 | . . . . . . 7 |
69 | 68, 3 | syl 14 | . . . . . 6 |
70 | simpl3 997 | . . . . . . 7 | |
71 | 70 | adantr 274 | . . . . . 6 |
72 | 69, 71 | xaddcld 9828 | . . . . 5 |
73 | prid2g 3686 | . . . . 5 | |
74 | 72, 73 | syl 14 | . . . 4 |
75 | simpr 109 | . . . . . 6 | |
76 | 52 | adantr 274 | . . . . . . 7 |
77 | xltadd1 9820 | . . . . . . 7 | |
78 | 76, 71, 68, 77 | syl3anc 1233 | . . . . . 6 |
79 | 75, 78 | mpbid 146 | . . . . 5 |
80 | 60 | adantr 274 | . . . . 5 |
81 | xaddcom 9805 | . . . . . 6 | |
82 | 71, 69, 81 | syl2anc 409 | . . . . 5 |
83 | 79, 80, 82 | 3brtr3d 4018 | . . . 4 |
84 | breq2 3991 | . . . . 5 | |
85 | 84 | rspcev 2834 | . . . 4 |
86 | 74, 83, 85 | syl2anc 409 | . . 3 |
87 | simprr 527 | . . . . . . 7 | |
88 | 10 | adantr 274 | . . . . . . . 8 |
89 | rexneg 9774 | . . . . . . . . . . 11 | |
90 | 89 | 3ad2ant1 1013 | . . . . . . . . . 10 |
91 | 90 | adantr 274 | . . . . . . . . 9 |
92 | 54 | renegcld 8286 | . . . . . . . . 9 |
93 | 91, 92 | eqeltrd 2247 | . . . . . . . 8 |
94 | xltadd1 9820 | . . . . . . . 8 | |
95 | 50, 88, 93, 94 | syl3anc 1233 | . . . . . . 7 |
96 | 87, 95 | mpbid 146 | . . . . . 6 |
97 | 3, 8 | syl3an1 1266 | . . . . . . . . 9 |
98 | 97 | adantr 274 | . . . . . . . 8 |
99 | xaddcom 9805 | . . . . . . . 8 | |
100 | 42, 98, 99 | syl2anc 409 | . . . . . . 7 |
101 | 100 | oveq1d 5865 | . . . . . 6 |
102 | 96, 101 | breqtrd 4013 | . . . . 5 |
103 | xpncan 9815 | . . . . . 6 | |
104 | 98, 54, 103 | syl2anc 409 | . . . . 5 |
105 | 102, 104 | breqtrd 4013 | . . . 4 |
106 | xrltmaxsup 11207 | . . . . 5 | |
107 | 44, 70, 52, 106 | syl3anc 1233 | . . . 4 |
108 | 105, 107 | mpbid 146 | . . 3 |
109 | 67, 86, 108 | mpjaodan 793 | . 2 |
110 | 2, 10, 40, 109 | eqsuptid 6970 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 wrex 2449 cpr 3582 class class class wbr 3987 (class class class)co 5850 csup 6955 cr 7760 cxr 7940 clt 7941 cle 7942 cneg 8078 cxne 9713 cxad 9714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-sup 6957 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-rp 9598 df-xneg 9716 df-xadd 9717 df-seqfrec 10389 df-exp 10463 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 |
This theorem is referenced by: xrmaxadd 11211 |
Copyright terms: Public domain | W3C validator |