| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxaddlem | Unicode version | ||
| Description: Lemma for xrmaxadd 11572. The case where |
| Ref | Expression |
|---|---|
| xrmaxaddlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri3 9919 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | rexr 8118 |
. . 3
| |
| 4 | simp1 1000 |
. . . 4
| |
| 5 | simp2 1001 |
. . . . 5
| |
| 6 | simp3 1002 |
. . . . 5
| |
| 7 | xrmaxcl 11563 |
. . . . 5
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . 4
|
| 9 | 4, 8 | xaddcld 10006 |
. . 3
|
| 10 | 3, 9 | syl3an1 1283 |
. 2
|
| 11 | elpri 3656 |
. . . . 5
| |
| 12 | simpr 110 |
. . . . . . 7
| |
| 13 | xrmax1sup 11564 |
. . . . . . . . . 10
| |
| 14 | 5, 6, 13 | syl2anc 411 |
. . . . . . . . 9
|
| 15 | xleadd2a 9996 |
. . . . . . . . 9
| |
| 16 | 5, 8, 4, 14, 15 | syl31anc 1253 |
. . . . . . . 8
|
| 17 | 16 | adantr 276 |
. . . . . . 7
|
| 18 | 12, 17 | eqbrtrd 4066 |
. . . . . 6
|
| 19 | simpr 110 |
. . . . . . 7
| |
| 20 | xrmax2sup 11565 |
. . . . . . . . . 10
| |
| 21 | 5, 6, 20 | syl2anc 411 |
. . . . . . . . 9
|
| 22 | xleadd2a 9996 |
. . . . . . . . 9
| |
| 23 | 6, 8, 4, 21, 22 | syl31anc 1253 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | 19, 24 | eqbrtrd 4066 |
. . . . . 6
|
| 26 | 18, 25 | jaodan 799 |
. . . . 5
|
| 27 | 11, 26 | sylan2 286 |
. . . 4
|
| 28 | 4, 5 | xaddcld 10006 |
. . . . . . . . 9
|
| 29 | 28 | adantr 276 |
. . . . . . . 8
|
| 30 | 12, 29 | eqeltrd 2282 |
. . . . . . 7
|
| 31 | 4, 6 | xaddcld 10006 |
. . . . . . . . 9
|
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | 19, 32 | eqeltrd 2282 |
. . . . . . 7
|
| 34 | 30, 33 | jaodan 799 |
. . . . . 6
|
| 35 | 11, 34 | sylan2 286 |
. . . . 5
|
| 36 | 9 | adantr 276 |
. . . . 5
|
| 37 | xrlenlt 8137 |
. . . . 5
| |
| 38 | 35, 36, 37 | syl2anc 411 |
. . . 4
|
| 39 | 27, 38 | mpbid 147 |
. . 3
|
| 40 | 3, 39 | syl3anl1 1298 |
. 2
|
| 41 | 3 | 3ad2ant1 1021 |
. . . . . . . 8
|
| 42 | 41 | adantr 276 |
. . . . . . 7
|
| 43 | 42 | adantr 276 |
. . . . . 6
|
| 44 | simpl2 1004 |
. . . . . . 7
| |
| 45 | 44 | adantr 276 |
. . . . . 6
|
| 46 | 43, 45 | xaddcld 10006 |
. . . . 5
|
| 47 | prid1g 3737 |
. . . . 5
| |
| 48 | 46, 47 | syl 14 |
. . . 4
|
| 49 | simpr 110 |
. . . . . 6
| |
| 50 | simprl 529 |
. . . . . . . . 9
| |
| 51 | 42 | xnegcld 9977 |
. . . . . . . . 9
|
| 52 | 50, 51 | xaddcld 10006 |
. . . . . . . 8
|
| 53 | 52 | adantr 276 |
. . . . . . 7
|
| 54 | simpl1 1003 |
. . . . . . . 8
| |
| 55 | 54 | adantr 276 |
. . . . . . 7
|
| 56 | xltadd1 9998 |
. . . . . . 7
| |
| 57 | 53, 45, 55, 56 | syl3anc 1250 |
. . . . . 6
|
| 58 | 49, 57 | mpbid 147 |
. . . . 5
|
| 59 | xnpcan 9994 |
. . . . . . 7
| |
| 60 | 50, 54, 59 | syl2anc 411 |
. . . . . 6
|
| 61 | 60 | adantr 276 |
. . . . 5
|
| 62 | xaddcom 9983 |
. . . . . 6
| |
| 63 | 45, 43, 62 | syl2anc 411 |
. . . . 5
|
| 64 | 58, 61, 63 | 3brtr3d 4075 |
. . . 4
|
| 65 | breq2 4048 |
. . . . 5
| |
| 66 | 65 | rspcev 2877 |
. . . 4
|
| 67 | 48, 64, 66 | syl2anc 411 |
. . 3
|
| 68 | 54 | adantr 276 |
. . . . . . 7
|
| 69 | 68, 3 | syl 14 |
. . . . . 6
|
| 70 | simpl3 1005 |
. . . . . . 7
| |
| 71 | 70 | adantr 276 |
. . . . . 6
|
| 72 | 69, 71 | xaddcld 10006 |
. . . . 5
|
| 73 | prid2g 3738 |
. . . . 5
| |
| 74 | 72, 73 | syl 14 |
. . . 4
|
| 75 | simpr 110 |
. . . . . 6
| |
| 76 | 52 | adantr 276 |
. . . . . . 7
|
| 77 | xltadd1 9998 |
. . . . . . 7
| |
| 78 | 76, 71, 68, 77 | syl3anc 1250 |
. . . . . 6
|
| 79 | 75, 78 | mpbid 147 |
. . . . 5
|
| 80 | 60 | adantr 276 |
. . . . 5
|
| 81 | xaddcom 9983 |
. . . . . 6
| |
| 82 | 71, 69, 81 | syl2anc 411 |
. . . . 5
|
| 83 | 79, 80, 82 | 3brtr3d 4075 |
. . . 4
|
| 84 | breq2 4048 |
. . . . 5
| |
| 85 | 84 | rspcev 2877 |
. . . 4
|
| 86 | 74, 83, 85 | syl2anc 411 |
. . 3
|
| 87 | simprr 531 |
. . . . . . 7
| |
| 88 | 10 | adantr 276 |
. . . . . . . 8
|
| 89 | rexneg 9952 |
. . . . . . . . . . 11
| |
| 90 | 89 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 91 | 90 | adantr 276 |
. . . . . . . . 9
|
| 92 | 54 | renegcld 8452 |
. . . . . . . . 9
|
| 93 | 91, 92 | eqeltrd 2282 |
. . . . . . . 8
|
| 94 | xltadd1 9998 |
. . . . . . . 8
| |
| 95 | 50, 88, 93, 94 | syl3anc 1250 |
. . . . . . 7
|
| 96 | 87, 95 | mpbid 147 |
. . . . . 6
|
| 97 | 3, 8 | syl3an1 1283 |
. . . . . . . . 9
|
| 98 | 97 | adantr 276 |
. . . . . . . 8
|
| 99 | xaddcom 9983 |
. . . . . . . 8
| |
| 100 | 42, 98, 99 | syl2anc 411 |
. . . . . . 7
|
| 101 | 100 | oveq1d 5959 |
. . . . . 6
|
| 102 | 96, 101 | breqtrd 4070 |
. . . . 5
|
| 103 | xpncan 9993 |
. . . . . 6
| |
| 104 | 98, 54, 103 | syl2anc 411 |
. . . . 5
|
| 105 | 102, 104 | breqtrd 4070 |
. . . 4
|
| 106 | xrltmaxsup 11568 |
. . . . 5
| |
| 107 | 44, 70, 52, 106 | syl3anc 1250 |
. . . 4
|
| 108 | 105, 107 | mpbid 147 |
. . 3
|
| 109 | 67, 86, 108 | mpjaodan 800 |
. 2
|
| 110 | 2, 10, 40, 109 | eqsuptid 7099 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-sup 7086 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-rp 9776 df-xneg 9894 df-xadd 9895 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 |
| This theorem is referenced by: xrmaxadd 11572 |
| Copyright terms: Public domain | W3C validator |