| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxaddlem | Unicode version | ||
| Description: Lemma for xrmaxadd 11426. The case where |
| Ref | Expression |
|---|---|
| xrmaxaddlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri3 9872 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | rexr 8072 |
. . 3
| |
| 4 | simp1 999 |
. . . 4
| |
| 5 | simp2 1000 |
. . . . 5
| |
| 6 | simp3 1001 |
. . . . 5
| |
| 7 | xrmaxcl 11417 |
. . . . 5
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . 4
|
| 9 | 4, 8 | xaddcld 9959 |
. . 3
|
| 10 | 3, 9 | syl3an1 1282 |
. 2
|
| 11 | elpri 3645 |
. . . . 5
| |
| 12 | simpr 110 |
. . . . . . 7
| |
| 13 | xrmax1sup 11418 |
. . . . . . . . . 10
| |
| 14 | 5, 6, 13 | syl2anc 411 |
. . . . . . . . 9
|
| 15 | xleadd2a 9949 |
. . . . . . . . 9
| |
| 16 | 5, 8, 4, 14, 15 | syl31anc 1252 |
. . . . . . . 8
|
| 17 | 16 | adantr 276 |
. . . . . . 7
|
| 18 | 12, 17 | eqbrtrd 4055 |
. . . . . 6
|
| 19 | simpr 110 |
. . . . . . 7
| |
| 20 | xrmax2sup 11419 |
. . . . . . . . . 10
| |
| 21 | 5, 6, 20 | syl2anc 411 |
. . . . . . . . 9
|
| 22 | xleadd2a 9949 |
. . . . . . . . 9
| |
| 23 | 6, 8, 4, 21, 22 | syl31anc 1252 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | 19, 24 | eqbrtrd 4055 |
. . . . . 6
|
| 26 | 18, 25 | jaodan 798 |
. . . . 5
|
| 27 | 11, 26 | sylan2 286 |
. . . 4
|
| 28 | 4, 5 | xaddcld 9959 |
. . . . . . . . 9
|
| 29 | 28 | adantr 276 |
. . . . . . . 8
|
| 30 | 12, 29 | eqeltrd 2273 |
. . . . . . 7
|
| 31 | 4, 6 | xaddcld 9959 |
. . . . . . . . 9
|
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | 19, 32 | eqeltrd 2273 |
. . . . . . 7
|
| 34 | 30, 33 | jaodan 798 |
. . . . . 6
|
| 35 | 11, 34 | sylan2 286 |
. . . . 5
|
| 36 | 9 | adantr 276 |
. . . . 5
|
| 37 | xrlenlt 8091 |
. . . . 5
| |
| 38 | 35, 36, 37 | syl2anc 411 |
. . . 4
|
| 39 | 27, 38 | mpbid 147 |
. . 3
|
| 40 | 3, 39 | syl3anl1 1297 |
. 2
|
| 41 | 3 | 3ad2ant1 1020 |
. . . . . . . 8
|
| 42 | 41 | adantr 276 |
. . . . . . 7
|
| 43 | 42 | adantr 276 |
. . . . . 6
|
| 44 | simpl2 1003 |
. . . . . . 7
| |
| 45 | 44 | adantr 276 |
. . . . . 6
|
| 46 | 43, 45 | xaddcld 9959 |
. . . . 5
|
| 47 | prid1g 3726 |
. . . . 5
| |
| 48 | 46, 47 | syl 14 |
. . . 4
|
| 49 | simpr 110 |
. . . . . 6
| |
| 50 | simprl 529 |
. . . . . . . . 9
| |
| 51 | 42 | xnegcld 9930 |
. . . . . . . . 9
|
| 52 | 50, 51 | xaddcld 9959 |
. . . . . . . 8
|
| 53 | 52 | adantr 276 |
. . . . . . 7
|
| 54 | simpl1 1002 |
. . . . . . . 8
| |
| 55 | 54 | adantr 276 |
. . . . . . 7
|
| 56 | xltadd1 9951 |
. . . . . . 7
| |
| 57 | 53, 45, 55, 56 | syl3anc 1249 |
. . . . . 6
|
| 58 | 49, 57 | mpbid 147 |
. . . . 5
|
| 59 | xnpcan 9947 |
. . . . . . 7
| |
| 60 | 50, 54, 59 | syl2anc 411 |
. . . . . 6
|
| 61 | 60 | adantr 276 |
. . . . 5
|
| 62 | xaddcom 9936 |
. . . . . 6
| |
| 63 | 45, 43, 62 | syl2anc 411 |
. . . . 5
|
| 64 | 58, 61, 63 | 3brtr3d 4064 |
. . . 4
|
| 65 | breq2 4037 |
. . . . 5
| |
| 66 | 65 | rspcev 2868 |
. . . 4
|
| 67 | 48, 64, 66 | syl2anc 411 |
. . 3
|
| 68 | 54 | adantr 276 |
. . . . . . 7
|
| 69 | 68, 3 | syl 14 |
. . . . . 6
|
| 70 | simpl3 1004 |
. . . . . . 7
| |
| 71 | 70 | adantr 276 |
. . . . . 6
|
| 72 | 69, 71 | xaddcld 9959 |
. . . . 5
|
| 73 | prid2g 3727 |
. . . . 5
| |
| 74 | 72, 73 | syl 14 |
. . . 4
|
| 75 | simpr 110 |
. . . . . 6
| |
| 76 | 52 | adantr 276 |
. . . . . . 7
|
| 77 | xltadd1 9951 |
. . . . . . 7
| |
| 78 | 76, 71, 68, 77 | syl3anc 1249 |
. . . . . 6
|
| 79 | 75, 78 | mpbid 147 |
. . . . 5
|
| 80 | 60 | adantr 276 |
. . . . 5
|
| 81 | xaddcom 9936 |
. . . . . 6
| |
| 82 | 71, 69, 81 | syl2anc 411 |
. . . . 5
|
| 83 | 79, 80, 82 | 3brtr3d 4064 |
. . . 4
|
| 84 | breq2 4037 |
. . . . 5
| |
| 85 | 84 | rspcev 2868 |
. . . 4
|
| 86 | 74, 83, 85 | syl2anc 411 |
. . 3
|
| 87 | simprr 531 |
. . . . . . 7
| |
| 88 | 10 | adantr 276 |
. . . . . . . 8
|
| 89 | rexneg 9905 |
. . . . . . . . . . 11
| |
| 90 | 89 | 3ad2ant1 1020 |
. . . . . . . . . 10
|
| 91 | 90 | adantr 276 |
. . . . . . . . 9
|
| 92 | 54 | renegcld 8406 |
. . . . . . . . 9
|
| 93 | 91, 92 | eqeltrd 2273 |
. . . . . . . 8
|
| 94 | xltadd1 9951 |
. . . . . . . 8
| |
| 95 | 50, 88, 93, 94 | syl3anc 1249 |
. . . . . . 7
|
| 96 | 87, 95 | mpbid 147 |
. . . . . 6
|
| 97 | 3, 8 | syl3an1 1282 |
. . . . . . . . 9
|
| 98 | 97 | adantr 276 |
. . . . . . . 8
|
| 99 | xaddcom 9936 |
. . . . . . . 8
| |
| 100 | 42, 98, 99 | syl2anc 411 |
. . . . . . 7
|
| 101 | 100 | oveq1d 5937 |
. . . . . 6
|
| 102 | 96, 101 | breqtrd 4059 |
. . . . 5
|
| 103 | xpncan 9946 |
. . . . . 6
| |
| 104 | 98, 54, 103 | syl2anc 411 |
. . . . 5
|
| 105 | 102, 104 | breqtrd 4059 |
. . . 4
|
| 106 | xrltmaxsup 11422 |
. . . . 5
| |
| 107 | 44, 70, 52, 106 | syl3anc 1249 |
. . . 4
|
| 108 | 105, 107 | mpbid 147 |
. . 3
|
| 109 | 67, 86, 108 | mpjaodan 799 |
. 2
|
| 110 | 2, 10, 40, 109 | eqsuptid 7063 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-xneg 9847 df-xadd 9848 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 |
| This theorem is referenced by: xrmaxadd 11426 |
| Copyright terms: Public domain | W3C validator |