| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxaddlem | Unicode version | ||
| Description: Lemma for xrmaxadd 11767. The case where |
| Ref | Expression |
|---|---|
| xrmaxaddlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri3 9989 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | rexr 8188 |
. . 3
| |
| 4 | simp1 1021 |
. . . 4
| |
| 5 | simp2 1022 |
. . . . 5
| |
| 6 | simp3 1023 |
. . . . 5
| |
| 7 | xrmaxcl 11758 |
. . . . 5
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . 4
|
| 9 | 4, 8 | xaddcld 10076 |
. . 3
|
| 10 | 3, 9 | syl3an1 1304 |
. 2
|
| 11 | elpri 3689 |
. . . . 5
| |
| 12 | simpr 110 |
. . . . . . 7
| |
| 13 | xrmax1sup 11759 |
. . . . . . . . . 10
| |
| 14 | 5, 6, 13 | syl2anc 411 |
. . . . . . . . 9
|
| 15 | xleadd2a 10066 |
. . . . . . . . 9
| |
| 16 | 5, 8, 4, 14, 15 | syl31anc 1274 |
. . . . . . . 8
|
| 17 | 16 | adantr 276 |
. . . . . . 7
|
| 18 | 12, 17 | eqbrtrd 4104 |
. . . . . 6
|
| 19 | simpr 110 |
. . . . . . 7
| |
| 20 | xrmax2sup 11760 |
. . . . . . . . . 10
| |
| 21 | 5, 6, 20 | syl2anc 411 |
. . . . . . . . 9
|
| 22 | xleadd2a 10066 |
. . . . . . . . 9
| |
| 23 | 6, 8, 4, 21, 22 | syl31anc 1274 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | 19, 24 | eqbrtrd 4104 |
. . . . . 6
|
| 26 | 18, 25 | jaodan 802 |
. . . . 5
|
| 27 | 11, 26 | sylan2 286 |
. . . 4
|
| 28 | 4, 5 | xaddcld 10076 |
. . . . . . . . 9
|
| 29 | 28 | adantr 276 |
. . . . . . . 8
|
| 30 | 12, 29 | eqeltrd 2306 |
. . . . . . 7
|
| 31 | 4, 6 | xaddcld 10076 |
. . . . . . . . 9
|
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | 19, 32 | eqeltrd 2306 |
. . . . . . 7
|
| 34 | 30, 33 | jaodan 802 |
. . . . . 6
|
| 35 | 11, 34 | sylan2 286 |
. . . . 5
|
| 36 | 9 | adantr 276 |
. . . . 5
|
| 37 | xrlenlt 8207 |
. . . . 5
| |
| 38 | 35, 36, 37 | syl2anc 411 |
. . . 4
|
| 39 | 27, 38 | mpbid 147 |
. . 3
|
| 40 | 3, 39 | syl3anl1 1319 |
. 2
|
| 41 | 3 | 3ad2ant1 1042 |
. . . . . . . 8
|
| 42 | 41 | adantr 276 |
. . . . . . 7
|
| 43 | 42 | adantr 276 |
. . . . . 6
|
| 44 | simpl2 1025 |
. . . . . . 7
| |
| 45 | 44 | adantr 276 |
. . . . . 6
|
| 46 | 43, 45 | xaddcld 10076 |
. . . . 5
|
| 47 | prid1g 3770 |
. . . . 5
| |
| 48 | 46, 47 | syl 14 |
. . . 4
|
| 49 | simpr 110 |
. . . . . 6
| |
| 50 | simprl 529 |
. . . . . . . . 9
| |
| 51 | 42 | xnegcld 10047 |
. . . . . . . . 9
|
| 52 | 50, 51 | xaddcld 10076 |
. . . . . . . 8
|
| 53 | 52 | adantr 276 |
. . . . . . 7
|
| 54 | simpl1 1024 |
. . . . . . . 8
| |
| 55 | 54 | adantr 276 |
. . . . . . 7
|
| 56 | xltadd1 10068 |
. . . . . . 7
| |
| 57 | 53, 45, 55, 56 | syl3anc 1271 |
. . . . . 6
|
| 58 | 49, 57 | mpbid 147 |
. . . . 5
|
| 59 | xnpcan 10064 |
. . . . . . 7
| |
| 60 | 50, 54, 59 | syl2anc 411 |
. . . . . 6
|
| 61 | 60 | adantr 276 |
. . . . 5
|
| 62 | xaddcom 10053 |
. . . . . 6
| |
| 63 | 45, 43, 62 | syl2anc 411 |
. . . . 5
|
| 64 | 58, 61, 63 | 3brtr3d 4113 |
. . . 4
|
| 65 | breq2 4086 |
. . . . 5
| |
| 66 | 65 | rspcev 2907 |
. . . 4
|
| 67 | 48, 64, 66 | syl2anc 411 |
. . 3
|
| 68 | 54 | adantr 276 |
. . . . . . 7
|
| 69 | 68, 3 | syl 14 |
. . . . . 6
|
| 70 | simpl3 1026 |
. . . . . . 7
| |
| 71 | 70 | adantr 276 |
. . . . . 6
|
| 72 | 69, 71 | xaddcld 10076 |
. . . . 5
|
| 73 | prid2g 3771 |
. . . . 5
| |
| 74 | 72, 73 | syl 14 |
. . . 4
|
| 75 | simpr 110 |
. . . . . 6
| |
| 76 | 52 | adantr 276 |
. . . . . . 7
|
| 77 | xltadd1 10068 |
. . . . . . 7
| |
| 78 | 76, 71, 68, 77 | syl3anc 1271 |
. . . . . 6
|
| 79 | 75, 78 | mpbid 147 |
. . . . 5
|
| 80 | 60 | adantr 276 |
. . . . 5
|
| 81 | xaddcom 10053 |
. . . . . 6
| |
| 82 | 71, 69, 81 | syl2anc 411 |
. . . . 5
|
| 83 | 79, 80, 82 | 3brtr3d 4113 |
. . . 4
|
| 84 | breq2 4086 |
. . . . 5
| |
| 85 | 84 | rspcev 2907 |
. . . 4
|
| 86 | 74, 83, 85 | syl2anc 411 |
. . 3
|
| 87 | simprr 531 |
. . . . . . 7
| |
| 88 | 10 | adantr 276 |
. . . . . . . 8
|
| 89 | rexneg 10022 |
. . . . . . . . . . 11
| |
| 90 | 89 | 3ad2ant1 1042 |
. . . . . . . . . 10
|
| 91 | 90 | adantr 276 |
. . . . . . . . 9
|
| 92 | 54 | renegcld 8522 |
. . . . . . . . 9
|
| 93 | 91, 92 | eqeltrd 2306 |
. . . . . . . 8
|
| 94 | xltadd1 10068 |
. . . . . . . 8
| |
| 95 | 50, 88, 93, 94 | syl3anc 1271 |
. . . . . . 7
|
| 96 | 87, 95 | mpbid 147 |
. . . . . 6
|
| 97 | 3, 8 | syl3an1 1304 |
. . . . . . . . 9
|
| 98 | 97 | adantr 276 |
. . . . . . . 8
|
| 99 | xaddcom 10053 |
. . . . . . . 8
| |
| 100 | 42, 98, 99 | syl2anc 411 |
. . . . . . 7
|
| 101 | 100 | oveq1d 6015 |
. . . . . 6
|
| 102 | 96, 101 | breqtrd 4108 |
. . . . 5
|
| 103 | xpncan 10063 |
. . . . . 6
| |
| 104 | 98, 54, 103 | syl2anc 411 |
. . . . 5
|
| 105 | 102, 104 | breqtrd 4108 |
. . . 4
|
| 106 | xrltmaxsup 11763 |
. . . . 5
| |
| 107 | 44, 70, 52, 106 | syl3anc 1271 |
. . . 4
|
| 108 | 105, 107 | mpbid 147 |
. . 3
|
| 109 | 67, 86, 108 | mpjaodan 803 |
. 2
|
| 110 | 2, 10, 40, 109 | eqsuptid 7160 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-sup 7147 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-rp 9846 df-xneg 9964 df-xadd 9965 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 |
| This theorem is referenced by: xrmaxadd 11767 |
| Copyright terms: Public domain | W3C validator |