| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxaddlem | Unicode version | ||
| Description: Lemma for xrmaxadd 11514. The case where |
| Ref | Expression |
|---|---|
| xrmaxaddlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri3 9918 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | rexr 8117 |
. . 3
| |
| 4 | simp1 999 |
. . . 4
| |
| 5 | simp2 1000 |
. . . . 5
| |
| 6 | simp3 1001 |
. . . . 5
| |
| 7 | xrmaxcl 11505 |
. . . . 5
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . 4
|
| 9 | 4, 8 | xaddcld 10005 |
. . 3
|
| 10 | 3, 9 | syl3an1 1282 |
. 2
|
| 11 | elpri 3655 |
. . . . 5
| |
| 12 | simpr 110 |
. . . . . . 7
| |
| 13 | xrmax1sup 11506 |
. . . . . . . . . 10
| |
| 14 | 5, 6, 13 | syl2anc 411 |
. . . . . . . . 9
|
| 15 | xleadd2a 9995 |
. . . . . . . . 9
| |
| 16 | 5, 8, 4, 14, 15 | syl31anc 1252 |
. . . . . . . 8
|
| 17 | 16 | adantr 276 |
. . . . . . 7
|
| 18 | 12, 17 | eqbrtrd 4065 |
. . . . . 6
|
| 19 | simpr 110 |
. . . . . . 7
| |
| 20 | xrmax2sup 11507 |
. . . . . . . . . 10
| |
| 21 | 5, 6, 20 | syl2anc 411 |
. . . . . . . . 9
|
| 22 | xleadd2a 9995 |
. . . . . . . . 9
| |
| 23 | 6, 8, 4, 21, 22 | syl31anc 1252 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | 19, 24 | eqbrtrd 4065 |
. . . . . 6
|
| 26 | 18, 25 | jaodan 798 |
. . . . 5
|
| 27 | 11, 26 | sylan2 286 |
. . . 4
|
| 28 | 4, 5 | xaddcld 10005 |
. . . . . . . . 9
|
| 29 | 28 | adantr 276 |
. . . . . . . 8
|
| 30 | 12, 29 | eqeltrd 2281 |
. . . . . . 7
|
| 31 | 4, 6 | xaddcld 10005 |
. . . . . . . . 9
|
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | 19, 32 | eqeltrd 2281 |
. . . . . . 7
|
| 34 | 30, 33 | jaodan 798 |
. . . . . 6
|
| 35 | 11, 34 | sylan2 286 |
. . . . 5
|
| 36 | 9 | adantr 276 |
. . . . 5
|
| 37 | xrlenlt 8136 |
. . . . 5
| |
| 38 | 35, 36, 37 | syl2anc 411 |
. . . 4
|
| 39 | 27, 38 | mpbid 147 |
. . 3
|
| 40 | 3, 39 | syl3anl1 1297 |
. 2
|
| 41 | 3 | 3ad2ant1 1020 |
. . . . . . . 8
|
| 42 | 41 | adantr 276 |
. . . . . . 7
|
| 43 | 42 | adantr 276 |
. . . . . 6
|
| 44 | simpl2 1003 |
. . . . . . 7
| |
| 45 | 44 | adantr 276 |
. . . . . 6
|
| 46 | 43, 45 | xaddcld 10005 |
. . . . 5
|
| 47 | prid1g 3736 |
. . . . 5
| |
| 48 | 46, 47 | syl 14 |
. . . 4
|
| 49 | simpr 110 |
. . . . . 6
| |
| 50 | simprl 529 |
. . . . . . . . 9
| |
| 51 | 42 | xnegcld 9976 |
. . . . . . . . 9
|
| 52 | 50, 51 | xaddcld 10005 |
. . . . . . . 8
|
| 53 | 52 | adantr 276 |
. . . . . . 7
|
| 54 | simpl1 1002 |
. . . . . . . 8
| |
| 55 | 54 | adantr 276 |
. . . . . . 7
|
| 56 | xltadd1 9997 |
. . . . . . 7
| |
| 57 | 53, 45, 55, 56 | syl3anc 1249 |
. . . . . 6
|
| 58 | 49, 57 | mpbid 147 |
. . . . 5
|
| 59 | xnpcan 9993 |
. . . . . . 7
| |
| 60 | 50, 54, 59 | syl2anc 411 |
. . . . . 6
|
| 61 | 60 | adantr 276 |
. . . . 5
|
| 62 | xaddcom 9982 |
. . . . . 6
| |
| 63 | 45, 43, 62 | syl2anc 411 |
. . . . 5
|
| 64 | 58, 61, 63 | 3brtr3d 4074 |
. . . 4
|
| 65 | breq2 4047 |
. . . . 5
| |
| 66 | 65 | rspcev 2876 |
. . . 4
|
| 67 | 48, 64, 66 | syl2anc 411 |
. . 3
|
| 68 | 54 | adantr 276 |
. . . . . . 7
|
| 69 | 68, 3 | syl 14 |
. . . . . 6
|
| 70 | simpl3 1004 |
. . . . . . 7
| |
| 71 | 70 | adantr 276 |
. . . . . 6
|
| 72 | 69, 71 | xaddcld 10005 |
. . . . 5
|
| 73 | prid2g 3737 |
. . . . 5
| |
| 74 | 72, 73 | syl 14 |
. . . 4
|
| 75 | simpr 110 |
. . . . . 6
| |
| 76 | 52 | adantr 276 |
. . . . . . 7
|
| 77 | xltadd1 9997 |
. . . . . . 7
| |
| 78 | 76, 71, 68, 77 | syl3anc 1249 |
. . . . . 6
|
| 79 | 75, 78 | mpbid 147 |
. . . . 5
|
| 80 | 60 | adantr 276 |
. . . . 5
|
| 81 | xaddcom 9982 |
. . . . . 6
| |
| 82 | 71, 69, 81 | syl2anc 411 |
. . . . 5
|
| 83 | 79, 80, 82 | 3brtr3d 4074 |
. . . 4
|
| 84 | breq2 4047 |
. . . . 5
| |
| 85 | 84 | rspcev 2876 |
. . . 4
|
| 86 | 74, 83, 85 | syl2anc 411 |
. . 3
|
| 87 | simprr 531 |
. . . . . . 7
| |
| 88 | 10 | adantr 276 |
. . . . . . . 8
|
| 89 | rexneg 9951 |
. . . . . . . . . . 11
| |
| 90 | 89 | 3ad2ant1 1020 |
. . . . . . . . . 10
|
| 91 | 90 | adantr 276 |
. . . . . . . . 9
|
| 92 | 54 | renegcld 8451 |
. . . . . . . . 9
|
| 93 | 91, 92 | eqeltrd 2281 |
. . . . . . . 8
|
| 94 | xltadd1 9997 |
. . . . . . . 8
| |
| 95 | 50, 88, 93, 94 | syl3anc 1249 |
. . . . . . 7
|
| 96 | 87, 95 | mpbid 147 |
. . . . . 6
|
| 97 | 3, 8 | syl3an1 1282 |
. . . . . . . . 9
|
| 98 | 97 | adantr 276 |
. . . . . . . 8
|
| 99 | xaddcom 9982 |
. . . . . . . 8
| |
| 100 | 42, 98, 99 | syl2anc 411 |
. . . . . . 7
|
| 101 | 100 | oveq1d 5958 |
. . . . . 6
|
| 102 | 96, 101 | breqtrd 4069 |
. . . . 5
|
| 103 | xpncan 9992 |
. . . . . 6
| |
| 104 | 98, 54, 103 | syl2anc 411 |
. . . . 5
|
| 105 | 102, 104 | breqtrd 4069 |
. . . 4
|
| 106 | xrltmaxsup 11510 |
. . . . 5
| |
| 107 | 44, 70, 52, 106 | syl3anc 1249 |
. . . 4
|
| 108 | 105, 107 | mpbid 147 |
. . 3
|
| 109 | 67, 86, 108 | mpjaodan 799 |
. 2
|
| 110 | 2, 10, 40, 109 | eqsuptid 7098 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-sup 7085 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-rp 9775 df-xneg 9893 df-xadd 9894 df-seqfrec 10591 df-exp 10682 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 |
| This theorem is referenced by: xrmaxadd 11514 |
| Copyright terms: Public domain | W3C validator |