Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > maxleim | Unicode version |
Description: Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.) |
Ref | Expression |
---|---|
maxleim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttri3 7999 | . . . 4 | |
2 | 1 | adantl 275 | . . 3 |
3 | simplr 525 | . . 3 | |
4 | prid2g 3688 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | simpll 524 | . . . . . . 7 | |
7 | 6 | ad2antrr 485 | . . . . . 6 |
8 | 3 | ad2antrr 485 | . . . . . 6 |
9 | simpllr 529 | . . . . . 6 | |
10 | 7, 8, 9 | lensymd 8041 | . . . . 5 |
11 | breq2 3993 | . . . . . . 7 | |
12 | 11 | notbid 662 | . . . . . 6 |
13 | 12 | adantl 275 | . . . . 5 |
14 | 10, 13 | mpbird 166 | . . . 4 |
15 | 3 | ad2antrr 485 | . . . . . 6 |
16 | 15 | ltnrd 8031 | . . . . 5 |
17 | breq2 3993 | . . . . . . 7 | |
18 | 17 | notbid 662 | . . . . . 6 |
19 | 18 | adantl 275 | . . . . 5 |
20 | 16, 19 | mpbird 166 | . . . 4 |
21 | elpri 3606 | . . . . 5 | |
22 | 21 | adantl 275 | . . . 4 |
23 | 14, 20, 22 | mpjaodan 793 | . . 3 |
24 | 2, 3, 5, 23 | supmaxti 6981 | . 2 |
25 | 24 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 cpr 3584 class class class wbr 3989 csup 6959 cr 7773 clt 7954 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-apti 7889 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-iota 5160 df-riota 5809 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: maxleb 11180 xrmaxiflemab 11210 |
Copyright terms: Public domain | W3C validator |