| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > maxleim | Unicode version | ||
| Description: Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.) |
| Ref | Expression |
|---|---|
| maxleim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 8222 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | simplr 528 |
. . 3
| |
| 4 | prid2g 3771 |
. . . 4
| |
| 5 | 3, 4 | syl 14 |
. . 3
|
| 6 | simpll 527 |
. . . . . . 7
| |
| 7 | 6 | ad2antrr 488 |
. . . . . 6
|
| 8 | 3 | ad2antrr 488 |
. . . . . 6
|
| 9 | simpllr 534 |
. . . . . 6
| |
| 10 | 7, 8, 9 | lensymd 8264 |
. . . . 5
|
| 11 | breq2 4086 |
. . . . . . 7
| |
| 12 | 11 | notbid 671 |
. . . . . 6
|
| 13 | 12 | adantl 277 |
. . . . 5
|
| 14 | 10, 13 | mpbird 167 |
. . . 4
|
| 15 | 3 | ad2antrr 488 |
. . . . . 6
|
| 16 | 15 | ltnrd 8254 |
. . . . 5
|
| 17 | breq2 4086 |
. . . . . . 7
| |
| 18 | 17 | notbid 671 |
. . . . . 6
|
| 19 | 18 | adantl 277 |
. . . . 5
|
| 20 | 16, 19 | mpbird 167 |
. . . 4
|
| 21 | elpri 3689 |
. . . . 5
| |
| 22 | 21 | adantl 277 |
. . . 4
|
| 23 | 14, 20, 22 | mpjaodan 803 |
. . 3
|
| 24 | 2, 3, 5, 23 | supmaxti 7167 |
. 2
|
| 25 | 24 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltirr 8107 ax-pre-apti 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-iota 5277 df-riota 5953 df-sup 7147 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 |
| This theorem is referenced by: maxleb 11722 xrmaxiflemab 11753 |
| Copyright terms: Public domain | W3C validator |