| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > maxleim | Unicode version | ||
| Description: Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.) |
| Ref | Expression |
|---|---|
| maxleim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 8172 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | simplr 528 |
. . 3
| |
| 4 | prid2g 3743 |
. . . 4
| |
| 5 | 3, 4 | syl 14 |
. . 3
|
| 6 | simpll 527 |
. . . . . . 7
| |
| 7 | 6 | ad2antrr 488 |
. . . . . 6
|
| 8 | 3 | ad2antrr 488 |
. . . . . 6
|
| 9 | simpllr 534 |
. . . . . 6
| |
| 10 | 7, 8, 9 | lensymd 8214 |
. . . . 5
|
| 11 | breq2 4055 |
. . . . . . 7
| |
| 12 | 11 | notbid 669 |
. . . . . 6
|
| 13 | 12 | adantl 277 |
. . . . 5
|
| 14 | 10, 13 | mpbird 167 |
. . . 4
|
| 15 | 3 | ad2antrr 488 |
. . . . . 6
|
| 16 | 15 | ltnrd 8204 |
. . . . 5
|
| 17 | breq2 4055 |
. . . . . . 7
| |
| 18 | 17 | notbid 669 |
. . . . . 6
|
| 19 | 18 | adantl 277 |
. . . . 5
|
| 20 | 16, 19 | mpbird 167 |
. . . 4
|
| 21 | elpri 3661 |
. . . . 5
| |
| 22 | 21 | adantl 277 |
. . . 4
|
| 23 | 14, 20, 22 | mpjaodan 800 |
. . 3
|
| 24 | 2, 3, 5, 23 | supmaxti 7121 |
. 2
|
| 25 | 24 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-pre-ltirr 8057 ax-pre-apti 8060 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-iota 5241 df-riota 5912 df-sup 7101 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 |
| This theorem is referenced by: maxleb 11602 xrmaxiflemab 11633 |
| Copyright terms: Public domain | W3C validator |