ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleim Unicode version

Theorem maxleim 11147
Description: Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.)
Assertion
Ref Expression
maxleim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )

Proof of Theorem maxleim
Dummy variables  f  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7978 . . . 4  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 275 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
f  e.  RR  /\  g  e.  RR )
)  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
3 simplr 520 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  B  e.  RR )
4 prid2g 3681 . . . 4  |-  ( B  e.  RR  ->  B  e.  { A ,  B } )
53, 4syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  B  e.  { A ,  B }
)
6 simpll 519 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  A  e.  RR )
76ad2antrr 480 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  e.  RR )
83ad2antrr 480 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  B  e.  RR )
9 simpllr 524 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  <_  B )
107, 8, 9lensymd 8020 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  B  <  A )
11 breq2 3986 . . . . . . 7  |-  ( y  =  A  ->  ( B  <  y  <->  B  <  A ) )
1211notbid 657 . . . . . 6  |-  ( y  =  A  ->  ( -.  B  <  y  <->  -.  B  <  A ) )
1312adantl 275 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( -.  B  <  y  <->  -.  B  <  A ) )
1410, 13mpbird 166 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  B  <  y )
153ad2antrr 480 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  B  e.  RR )
1615ltnrd 8010 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  B  <  B )
17 breq2 3986 . . . . . . 7  |-  ( y  =  B  ->  ( B  <  y  <->  B  <  B ) )
1817notbid 657 . . . . . 6  |-  ( y  =  B  ->  ( -.  B  <  y  <->  -.  B  <  B ) )
1918adantl 275 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( -.  B  <  y  <->  -.  B  <  B ) )
2016, 19mpbird 166 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  B  <  y )
21 elpri 3599 . . . . 5  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
2221adantl 275 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  ->  (
y  =  A  \/  y  =  B )
)
2314, 20, 22mpjaodan 788 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  ->  -.  B  <  y )
242, 3, 5, 23supmaxti 6969 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B )
2524ex 114 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   {cpr 3577   class class class wbr 3982   supcsup 6947   RRcr 7752    < clt 7933    <_ cle 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-apti 7868
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-iota 5153  df-riota 5798  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939
This theorem is referenced by:  maxleb  11158  xrmaxiflemab  11188
  Copyright terms: Public domain W3C validator