ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleim Unicode version

Theorem maxleim 11216
Description: Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.)
Assertion
Ref Expression
maxleim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )

Proof of Theorem maxleim
Dummy variables  f  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8039 . . . 4  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 277 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
f  e.  RR  /\  g  e.  RR )
)  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
3 simplr 528 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  B  e.  RR )
4 prid2g 3699 . . . 4  |-  ( B  e.  RR  ->  B  e.  { A ,  B } )
53, 4syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  B  e.  { A ,  B }
)
6 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  A  e.  RR )
76ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  e.  RR )
83ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  B  e.  RR )
9 simpllr 534 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  <_  B )
107, 8, 9lensymd 8081 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  B  <  A )
11 breq2 4009 . . . . . . 7  |-  ( y  =  A  ->  ( B  <  y  <->  B  <  A ) )
1211notbid 667 . . . . . 6  |-  ( y  =  A  ->  ( -.  B  <  y  <->  -.  B  <  A ) )
1312adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( -.  B  <  y  <->  -.  B  <  A ) )
1410, 13mpbird 167 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  B  <  y )
153ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  B  e.  RR )
1615ltnrd 8071 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  B  <  B )
17 breq2 4009 . . . . . . 7  |-  ( y  =  B  ->  ( B  <  y  <->  B  <  B ) )
1817notbid 667 . . . . . 6  |-  ( y  =  B  ->  ( -.  B  <  y  <->  -.  B  <  B ) )
1918adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( -.  B  <  y  <->  -.  B  <  B ) )
2016, 19mpbird 167 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  B  <  y )
21 elpri 3617 . . . . 5  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
2221adantl 277 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  ->  (
y  =  A  \/  y  =  B )
)
2314, 20, 22mpjaodan 798 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  ->  -.  B  <  y )
242, 3, 5, 23supmaxti 7005 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B )
2524ex 115 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   {cpr 3595   class class class wbr 4005   supcsup 6983   RRcr 7812    < clt 7994    <_ cle 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925  ax-pre-apti 7928
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-iota 5180  df-riota 5833  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000
This theorem is referenced by:  maxleb  11227  xrmaxiflemab  11257
  Copyright terms: Public domain W3C validator