ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleim Unicode version

Theorem maxleim 11169
Description: Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.)
Assertion
Ref Expression
maxleim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )

Proof of Theorem maxleim
Dummy variables  f  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7999 . . . 4  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 275 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
f  e.  RR  /\  g  e.  RR )
)  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
3 simplr 525 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  B  e.  RR )
4 prid2g 3688 . . . 4  |-  ( B  e.  RR  ->  B  e.  { A ,  B } )
53, 4syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  B  e.  { A ,  B }
)
6 simpll 524 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  A  e.  RR )
76ad2antrr 485 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  e.  RR )
83ad2antrr 485 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  B  e.  RR )
9 simpllr 529 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  <_  B )
107, 8, 9lensymd 8041 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  B  <  A )
11 breq2 3993 . . . . . . 7  |-  ( y  =  A  ->  ( B  <  y  <->  B  <  A ) )
1211notbid 662 . . . . . 6  |-  ( y  =  A  ->  ( -.  B  <  y  <->  -.  B  <  A ) )
1312adantl 275 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( -.  B  <  y  <->  -.  B  <  A ) )
1410, 13mpbird 166 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  B  <  y )
153ad2antrr 485 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  B  e.  RR )
1615ltnrd 8031 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  B  <  B )
17 breq2 3993 . . . . . . 7  |-  ( y  =  B  ->  ( B  <  y  <->  B  <  B ) )
1817notbid 662 . . . . . 6  |-  ( y  =  B  ->  ( -.  B  <  y  <->  -.  B  <  B ) )
1918adantl 275 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( -.  B  <  y  <->  -.  B  <  B ) )
2016, 19mpbird 166 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  B  <  y )
21 elpri 3606 . . . . 5  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
2221adantl 275 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  ->  (
y  =  A  \/  y  =  B )
)
2314, 20, 22mpjaodan 793 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  ->  -.  B  <  y )
242, 3, 5, 23supmaxti 6981 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B )
2524ex 114 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   {cpr 3584   class class class wbr 3989   supcsup 6959   RRcr 7773    < clt 7954    <_ cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-apti 7889
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-iota 5160  df-riota 5809  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960
This theorem is referenced by:  maxleb  11180  xrmaxiflemab  11210
  Copyright terms: Public domain W3C validator