ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleim Unicode version

Theorem maxleim 11435
Description: Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.)
Assertion
Ref Expression
maxleim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )

Proof of Theorem maxleim
Dummy variables  f  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8134 . . . 4  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 277 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
f  e.  RR  /\  g  e.  RR )
)  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
3 simplr 528 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  B  e.  RR )
4 prid2g 3737 . . . 4  |-  ( B  e.  RR  ->  B  e.  { A ,  B } )
53, 4syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  B  e.  { A ,  B }
)
6 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  A  e.  RR )
76ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  e.  RR )
83ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  B  e.  RR )
9 simpllr 534 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  <_  B )
107, 8, 9lensymd 8176 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  B  <  A )
11 breq2 4047 . . . . . . 7  |-  ( y  =  A  ->  ( B  <  y  <->  B  <  A ) )
1211notbid 668 . . . . . 6  |-  ( y  =  A  ->  ( -.  B  <  y  <->  -.  B  <  A ) )
1312adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( -.  B  <  y  <->  -.  B  <  A ) )
1410, 13mpbird 167 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  B  <  y )
153ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  B  e.  RR )
1615ltnrd 8166 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  B  <  B )
17 breq2 4047 . . . . . . 7  |-  ( y  =  B  ->  ( B  <  y  <->  B  <  B ) )
1817notbid 668 . . . . . 6  |-  ( y  =  B  ->  ( -.  B  <  y  <->  -.  B  <  B ) )
1918adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( -.  B  <  y  <->  -.  B  <  B ) )
2016, 19mpbird 167 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  B  <  y )
21 elpri 3655 . . . . 5  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
2221adantl 277 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  ->  (
y  =  A  \/  y  =  B )
)
2314, 20, 22mpjaodan 799 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  ->  -.  B  <  y )
242, 3, 5, 23supmaxti 7088 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B )
2524ex 115 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1372    e. wcel 2175   {cpr 3633   class class class wbr 4043   supcsup 7066   RRcr 7906    < clt 8089    <_ cle 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-pre-ltirr 8019  ax-pre-apti 8022
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4679  df-cnv 4681  df-iota 5229  df-riota 5889  df-sup 7068  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095
This theorem is referenced by:  maxleb  11446  xrmaxiflemab  11477
  Copyright terms: Public domain W3C validator