Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > maxleim | Unicode version |
Description: Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.) |
Ref | Expression |
---|---|
maxleim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttri3 7978 | . . . 4 | |
2 | 1 | adantl 275 | . . 3 |
3 | simplr 520 | . . 3 | |
4 | prid2g 3681 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | simpll 519 | . . . . . . 7 | |
7 | 6 | ad2antrr 480 | . . . . . 6 |
8 | 3 | ad2antrr 480 | . . . . . 6 |
9 | simpllr 524 | . . . . . 6 | |
10 | 7, 8, 9 | lensymd 8020 | . . . . 5 |
11 | breq2 3986 | . . . . . . 7 | |
12 | 11 | notbid 657 | . . . . . 6 |
13 | 12 | adantl 275 | . . . . 5 |
14 | 10, 13 | mpbird 166 | . . . 4 |
15 | 3 | ad2antrr 480 | . . . . . 6 |
16 | 15 | ltnrd 8010 | . . . . 5 |
17 | breq2 3986 | . . . . . . 7 | |
18 | 17 | notbid 657 | . . . . . 6 |
19 | 18 | adantl 275 | . . . . 5 |
20 | 16, 19 | mpbird 166 | . . . 4 |
21 | elpri 3599 | . . . . 5 | |
22 | 21 | adantl 275 | . . . 4 |
23 | 14, 20, 22 | mpjaodan 788 | . . 3 |
24 | 2, 3, 5, 23 | supmaxti 6969 | . 2 |
25 | 24 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 cpr 3577 class class class wbr 3982 csup 6947 cr 7752 clt 7933 cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-apti 7868 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-riota 5798 df-sup 6949 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: maxleb 11158 xrmaxiflemab 11188 |
Copyright terms: Public domain | W3C validator |