ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemval Unicode version

Theorem xrmaxiflemval 11480
Description: Lemma for xrmaxif 11481. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
Hypothesis
Ref Expression
xrmaxiflemval.m  |-  M  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
Assertion
Ref Expression
xrmaxiflemval  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( M  e.  RR*  /\  A. x  e.  { A ,  B }  -.  M  <  x  /\  A. x  e.  RR*  ( x  < 
M  ->  E. z  e.  { A ,  B } x  <  z ) ) )
Distinct variable groups:    x, A, z   
x, B, z
Allowed substitution hints:    M( x, z)

Proof of Theorem xrmaxiflemval
StepHypRef Expression
1 xrmaxiflemval.m . . 3  |-  M  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
2 xrmaxiflemcl 11475 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
31, 2eqeltrid 2291 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  M  e.  RR* )
4 vex 2774 . . . . 5  |-  x  e. 
_V
54elpr 3653 . . . 4  |-  ( x  e.  { A ,  B }  <->  ( x  =  A  \/  x  =  B ) )
6 xrmaxifle 11476 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
76, 1breqtrrdi 4085 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  M )
8 xrlenlt 8119 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  M  e.  RR* )  ->  ( A  <_  M  <->  -.  M  <  A ) )
93, 8syldan 282 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  M  <->  -.  M  <  A ) )
107, 9mpbid 147 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -.  M  <  A )
11 breq2 4047 . . . . . . 7  |-  ( x  =  A  ->  ( M  <  x  <->  M  <  A ) )
1211notbid 668 . . . . . 6  |-  ( x  =  A  ->  ( -.  M  <  x  <->  -.  M  <  A ) )
1310, 12syl5ibrcom 157 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  =  A  ->  -.  M  <  x ) )
14 xrmaxifle 11476 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  B  <_  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
1514ancoms 268 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
16 xrmaxiflemcom 11479 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  )
) ) ) ) )
171, 16eqtrid 2249 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  M  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
1815, 17breqtrrd 4071 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  M )
19 simpr 110 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
20 xrlenlt 8119 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  M  e.  RR* )  ->  ( B  <_  M  <->  -.  M  <  B ) )
2119, 3, 20syl2anc 411 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <_  M  <->  -.  M  <  B ) )
2218, 21mpbid 147 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -.  M  <  B )
23 breq2 4047 . . . . . . 7  |-  ( x  =  B  ->  ( M  <  x  <->  M  <  B ) )
2423notbid 668 . . . . . 6  |-  ( x  =  B  ->  ( -.  M  <  x  <->  -.  M  <  B ) )
2522, 24syl5ibrcom 157 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  =  B  ->  -.  M  <  x ) )
2613, 25jaod 718 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( x  =  A  \/  x  =  B )  ->  -.  M  <  x ) )
275, 26biimtrid 152 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  { A ,  B }  ->  -.  M  <  x ) )
2827ralrimiv 2577 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. x  e.  { A ,  B }  -.  M  <  x
)
29 prid1g 3736 . . . . . . 7  |-  ( A  e.  RR*  ->  A  e. 
{ A ,  B } )
3029ad4antr 494 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  A )  ->  A  e.  { A ,  B } )
31 breq2 4047 . . . . . . 7  |-  ( z  =  A  ->  (
x  <  z  <->  x  <  A ) )
3231rspcev 2876 . . . . . 6  |-  ( ( A  e.  { A ,  B }  /\  x  <  A )  ->  E. z  e.  { A ,  B } x  <  z )
3330, 32sylancom 420 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  A )  ->  E. z  e.  { A ,  B } x  <  z )
34 prid2g 3737 . . . . . . 7  |-  ( B  e.  RR*  ->  B  e. 
{ A ,  B } )
3534ad4antlr 495 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  B )  ->  B  e.  { A ,  B } )
36 breq2 4047 . . . . . . 7  |-  ( z  =  B  ->  (
x  <  z  <->  x  <  B ) )
3736rspcev 2876 . . . . . 6  |-  ( ( B  e.  { A ,  B }  /\  x  <  B )  ->  E. z  e.  { A ,  B } x  <  z )
3835, 37sylancom 420 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  B )  ->  E. z  e.  { A ,  B } x  <  z )
39 simplll 533 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  A  e.  RR* )
40 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  B  e.  RR* )
41 simplr 528 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  x  e.  RR* )
421breq2i 4051 . . . . . . . 8  |-  ( x  <  M  <->  x  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
4342biimpi 120 . . . . . . 7  |-  ( x  <  M  ->  x  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
4443adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  x  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
4539, 40, 41, 44xrmaxiflemlub 11478 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  (
x  <  A  \/  x  <  B ) )
4633, 38, 45mpjaodan 799 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  E. z  e.  { A ,  B } x  <  z )
4746ex 115 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( x  <  M  ->  E. z  e.  { A ,  B }
x  <  z )
)
4847ralrimiva 2578 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. x  e.  RR*  ( x  < 
M  ->  E. z  e.  { A ,  B } x  <  z ) )
493, 28, 483jca 1179 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( M  e.  RR*  /\  A. x  e.  { A ,  B }  -.  M  <  x  /\  A. x  e.  RR*  ( x  < 
M  ->  E. z  e.  { A ,  B } x  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   ifcif 3570   {cpr 3633   class class class wbr 4043   supcsup 7066   RRcr 7906   +oocpnf 8086   -oocmnf 8087   RR*cxr 8088    < clt 8089    <_ cle 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-sup 7068  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-rp 9758  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229
This theorem is referenced by:  xrmaxif  11481
  Copyright terms: Public domain W3C validator