ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemval Unicode version

Theorem xrmaxiflemval 11019
Description: Lemma for xrmaxif 11020. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
Hypothesis
Ref Expression
xrmaxiflemval.m  |-  M  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
Assertion
Ref Expression
xrmaxiflemval  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( M  e.  RR*  /\  A. x  e.  { A ,  B }  -.  M  <  x  /\  A. x  e.  RR*  ( x  < 
M  ->  E. z  e.  { A ,  B } x  <  z ) ) )
Distinct variable groups:    x, A, z   
x, B, z
Allowed substitution hints:    M( x, z)

Proof of Theorem xrmaxiflemval
StepHypRef Expression
1 xrmaxiflemval.m . . 3  |-  M  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
2 xrmaxiflemcl 11014 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
31, 2eqeltrid 2226 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  M  e.  RR* )
4 vex 2689 . . . . 5  |-  x  e. 
_V
54elpr 3548 . . . 4  |-  ( x  e.  { A ,  B }  <->  ( x  =  A  \/  x  =  B ) )
6 xrmaxifle 11015 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
76, 1breqtrrdi 3970 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  M )
8 xrlenlt 7829 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  M  e.  RR* )  ->  ( A  <_  M  <->  -.  M  <  A ) )
93, 8syldan 280 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  M  <->  -.  M  <  A ) )
107, 9mpbid 146 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -.  M  <  A )
11 breq2 3933 . . . . . . 7  |-  ( x  =  A  ->  ( M  <  x  <->  M  <  A ) )
1211notbid 656 . . . . . 6  |-  ( x  =  A  ->  ( -.  M  <  x  <->  -.  M  <  A ) )
1310, 12syl5ibrcom 156 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  =  A  ->  -.  M  <  x ) )
14 xrmaxifle 11015 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  B  <_  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
1514ancoms 266 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
16 xrmaxiflemcom 11018 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  )
) ) ) ) )
171, 16syl5eq 2184 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  M  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
1815, 17breqtrrd 3956 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  M )
19 simpr 109 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
20 xrlenlt 7829 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  M  e.  RR* )  ->  ( B  <_  M  <->  -.  M  <  B ) )
2119, 3, 20syl2anc 408 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <_  M  <->  -.  M  <  B ) )
2218, 21mpbid 146 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -.  M  <  B )
23 breq2 3933 . . . . . . 7  |-  ( x  =  B  ->  ( M  <  x  <->  M  <  B ) )
2423notbid 656 . . . . . 6  |-  ( x  =  B  ->  ( -.  M  <  x  <->  -.  M  <  B ) )
2522, 24syl5ibrcom 156 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  =  B  ->  -.  M  <  x ) )
2613, 25jaod 706 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( x  =  A  \/  x  =  B )  ->  -.  M  <  x ) )
275, 26syl5bi 151 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  { A ,  B }  ->  -.  M  <  x ) )
2827ralrimiv 2504 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. x  e.  { A ,  B }  -.  M  <  x
)
29 prid1g 3627 . . . . . . 7  |-  ( A  e.  RR*  ->  A  e. 
{ A ,  B } )
3029ad4antr 485 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  A )  ->  A  e.  { A ,  B } )
31 breq2 3933 . . . . . . 7  |-  ( z  =  A  ->  (
x  <  z  <->  x  <  A ) )
3231rspcev 2789 . . . . . 6  |-  ( ( A  e.  { A ,  B }  /\  x  <  A )  ->  E. z  e.  { A ,  B } x  <  z )
3330, 32sylancom 416 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  A )  ->  E. z  e.  { A ,  B } x  <  z )
34 prid2g 3628 . . . . . . 7  |-  ( B  e.  RR*  ->  B  e. 
{ A ,  B } )
3534ad4antlr 486 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  B )  ->  B  e.  { A ,  B } )
36 breq2 3933 . . . . . . 7  |-  ( z  =  B  ->  (
x  <  z  <->  x  <  B ) )
3736rspcev 2789 . . . . . 6  |-  ( ( B  e.  { A ,  B }  /\  x  <  B )  ->  E. z  e.  { A ,  B } x  <  z )
3835, 37sylancom 416 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  B )  ->  E. z  e.  { A ,  B } x  <  z )
39 simplll 522 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  A  e.  RR* )
40 simpllr 523 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  B  e.  RR* )
41 simplr 519 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  x  e.  RR* )
421breq2i 3937 . . . . . . . 8  |-  ( x  <  M  <->  x  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
4342biimpi 119 . . . . . . 7  |-  ( x  <  M  ->  x  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
4443adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  x  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
4539, 40, 41, 44xrmaxiflemlub 11017 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  (
x  <  A  \/  x  <  B ) )
4633, 38, 45mpjaodan 787 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  E. z  e.  { A ,  B } x  <  z )
4746ex 114 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( x  <  M  ->  E. z  e.  { A ,  B }
x  <  z )
)
4847ralrimiva 2505 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. x  e.  RR*  ( x  < 
M  ->  E. z  e.  { A ,  B } x  <  z ) )
493, 28, 483jca 1161 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( M  e.  RR*  /\  A. x  e.  { A ,  B }  -.  M  <  x  /\  A. x  e.  RR*  ( x  < 
M  ->  E. z  e.  { A ,  B } x  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   ifcif 3474   {cpr 3528   class class class wbr 3929   supcsup 6869   RRcr 7619   +oocpnf 7797   -oocmnf 7798   RR*cxr 7799    < clt 7800    <_ cle 7801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  xrmaxif  11020
  Copyright terms: Public domain W3C validator