ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemval Unicode version

Theorem xrmaxiflemval 11636
Description: Lemma for xrmaxif 11637. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
Hypothesis
Ref Expression
xrmaxiflemval.m  |-  M  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
Assertion
Ref Expression
xrmaxiflemval  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( M  e.  RR*  /\  A. x  e.  { A ,  B }  -.  M  <  x  /\  A. x  e.  RR*  ( x  < 
M  ->  E. z  e.  { A ,  B } x  <  z ) ) )
Distinct variable groups:    x, A, z   
x, B, z
Allowed substitution hints:    M( x, z)

Proof of Theorem xrmaxiflemval
StepHypRef Expression
1 xrmaxiflemval.m . . 3  |-  M  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )
2 xrmaxiflemcl 11631 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
31, 2eqeltrid 2293 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  M  e.  RR* )
4 vex 2776 . . . . 5  |-  x  e. 
_V
54elpr 3659 . . . 4  |-  ( x  e.  { A ,  B }  <->  ( x  =  A  \/  x  =  B ) )
6 xrmaxifle 11632 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
76, 1breqtrrdi 4093 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  M )
8 xrlenlt 8157 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  M  e.  RR* )  ->  ( A  <_  M  <->  -.  M  <  A ) )
93, 8syldan 282 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  M  <->  -.  M  <  A ) )
107, 9mpbid 147 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -.  M  <  A )
11 breq2 4055 . . . . . . 7  |-  ( x  =  A  ->  ( M  <  x  <->  M  <  A ) )
1211notbid 669 . . . . . 6  |-  ( x  =  A  ->  ( -.  M  <  x  <->  -.  M  <  A ) )
1310, 12syl5ibrcom 157 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  =  A  ->  -.  M  <  x ) )
14 xrmaxifle 11632 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  B  <_  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
1514ancoms 268 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
16 xrmaxiflemcom 11635 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  )
) ) ) ) )
171, 16eqtrid 2251 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  M  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
1815, 17breqtrrd 4079 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  M )
19 simpr 110 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
20 xrlenlt 8157 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  M  e.  RR* )  ->  ( B  <_  M  <->  -.  M  <  B ) )
2119, 3, 20syl2anc 411 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <_  M  <->  -.  M  <  B ) )
2218, 21mpbid 147 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -.  M  <  B )
23 breq2 4055 . . . . . . 7  |-  ( x  =  B  ->  ( M  <  x  <->  M  <  B ) )
2423notbid 669 . . . . . 6  |-  ( x  =  B  ->  ( -.  M  <  x  <->  -.  M  <  B ) )
2522, 24syl5ibrcom 157 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  =  B  ->  -.  M  <  x ) )
2613, 25jaod 719 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( x  =  A  \/  x  =  B )  ->  -.  M  <  x ) )
275, 26biimtrid 152 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  { A ,  B }  ->  -.  M  <  x ) )
2827ralrimiv 2579 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. x  e.  { A ,  B }  -.  M  <  x
)
29 prid1g 3742 . . . . . . 7  |-  ( A  e.  RR*  ->  A  e. 
{ A ,  B } )
3029ad4antr 494 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  A )  ->  A  e.  { A ,  B } )
31 breq2 4055 . . . . . . 7  |-  ( z  =  A  ->  (
x  <  z  <->  x  <  A ) )
3231rspcev 2881 . . . . . 6  |-  ( ( A  e.  { A ,  B }  /\  x  <  A )  ->  E. z  e.  { A ,  B } x  <  z )
3330, 32sylancom 420 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  A )  ->  E. z  e.  { A ,  B } x  <  z )
34 prid2g 3743 . . . . . . 7  |-  ( B  e.  RR*  ->  B  e. 
{ A ,  B } )
3534ad4antlr 495 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  B )  ->  B  e.  { A ,  B } )
36 breq2 4055 . . . . . . 7  |-  ( z  =  B  ->  (
x  <  z  <->  x  <  B ) )
3736rspcev 2881 . . . . . 6  |-  ( ( B  e.  { A ,  B }  /\  x  <  B )  ->  E. z  e.  { A ,  B } x  <  z )
3835, 37sylancom 420 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  x  e.  RR* )  /\  x  <  M )  /\  x  <  B )  ->  E. z  e.  { A ,  B } x  <  z )
39 simplll 533 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  A  e.  RR* )
40 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  B  e.  RR* )
41 simplr 528 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  x  e.  RR* )
421breq2i 4059 . . . . . . . 8  |-  ( x  <  M  <->  x  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
4342biimpi 120 . . . . . . 7  |-  ( x  <  M  ->  x  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
4443adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  x  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
4539, 40, 41, 44xrmaxiflemlub 11634 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  (
x  <  A  \/  x  <  B ) )
4633, 38, 45mpjaodan 800 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  x  e. 
RR* )  /\  x  <  M )  ->  E. z  e.  { A ,  B } x  <  z )
4746ex 115 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( x  <  M  ->  E. z  e.  { A ,  B }
x  <  z )
)
4847ralrimiva 2580 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. x  e.  RR*  ( x  < 
M  ->  E. z  e.  { A ,  B } x  <  z ) )
493, 28, 483jca 1180 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( M  e.  RR*  /\  A. x  e.  { A ,  B }  -.  M  <  x  /\  A. x  e.  RR*  ( x  < 
M  ->  E. z  e.  { A ,  B } x  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   ifcif 3575   {cpr 3639   class class class wbr 4051   supcsup 7099   RRcr 7944   +oocpnf 8124   -oocmnf 8125   RR*cxr 8126    < clt 8127    <_ cle 8128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-sup 7101  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385
This theorem is referenced by:  xrmaxif  11637
  Copyright terms: Public domain W3C validator