ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxleim Unicode version

Theorem xrmaxleim 11171
Description: Value of maximum when we know which extended real is larger. (Contributed by Jim Kingdon, 25-Apr-2023.)
Assertion
Ref Expression
xrmaxleim  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )

Proof of Theorem xrmaxleim
Dummy variables  f  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 9724 . . . 4  |-  ( ( f  e.  RR*  /\  g  e.  RR* )  ->  (
f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
21adantl 275 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  A  <_  B )  /\  (
f  e.  RR*  /\  g  e.  RR* ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 simplr 520 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  A  <_  B )  ->  B  e.  RR* )
4 prid2g 3675 . . . 4  |-  ( B  e.  RR*  ->  B  e. 
{ A ,  B } )
53, 4syl 14 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  A  <_  B )  ->  B  e.  { A ,  B }
)
6 simpllr 524 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  <_  B )
7 xrlenlt 7954 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
87ad3antrrr 484 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( A  <_  B  <->  -.  B  <  A ) )
96, 8mpbid 146 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  B  <  A )
10 breq2 3980 . . . . . . 7  |-  ( y  =  A  ->  ( B  <  y  <->  B  <  A ) )
1110notbid 657 . . . . . 6  |-  ( y  =  A  ->  ( -.  B  <  y  <->  -.  B  <  A ) )
1211adantl 275 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( -.  B  <  y  <->  -.  B  <  A ) )
139, 12mpbird 166 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  B  <  y )
14 xrltnr 9706 . . . . . 6  |-  ( B  e.  RR*  ->  -.  B  <  B )
1514ad4antlr 487 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  B  <  B )
16 breq2 3980 . . . . . . 7  |-  ( y  =  B  ->  ( B  <  y  <->  B  <  B ) )
1716notbid 657 . . . . . 6  |-  ( y  =  B  ->  ( -.  B  <  y  <->  -.  B  <  B ) )
1817adantl 275 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( -.  B  <  y  <->  -.  B  <  B ) )
1915, 18mpbird 166 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  B  <  y )
20 elpri 3593 . . . . 5  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
2120adantl 275 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  ->  (
y  =  A  \/  y  =  B )
)
2213, 19, 21mpjaodan 788 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  A  <_  B )  /\  y  e.  { A ,  B } )  ->  -.  B  <  y )
232, 3, 5, 22supmaxti 6960 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  A  <_  B )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B )
2423ex 114 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1342    e. wcel 2135   {cpr 3571   class class class wbr 3976   supcsup 6938   RR*cxr 7923    < clt 7924    <_ cle 7925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-pre-ltirr 7856  ax-pre-apti 7859
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-xp 4604  df-cnv 4606  df-iota 5147  df-riota 5792  df-sup 6940  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930
This theorem is referenced by:  xrmaxltsup  11185  xrmaxadd  11188  xrmineqinf  11196
  Copyright terms: Public domain W3C validator