ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxabslemval Unicode version

Theorem maxabslemval 11352
Description: Lemma for maxabs 11353. Value of the supremum. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxabslemval  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. x  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  x  /\  A. x  e.  RR  (
x  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } x  <  z ) ) )
Distinct variable groups:    x, A, z   
x, B, z

Proof of Theorem maxabslemval
StepHypRef Expression
1 readdcl 7998 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
2 simpl 109 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
32recnd 8048 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  CC )
4 simpr 110 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
54recnd 8048 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
63, 5subcld 8330 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  CC )
76abscld 11325 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( A  -  B )
)  e.  RR )
81, 7readdcld 8049 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  e.  RR )
98rehalfcld 9229 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR )
10 vex 2763 . . . . 5  |-  x  e. 
_V
1110elpr 3639 . . . 4  |-  ( x  e.  { A ,  B }  <->  ( x  =  A  \/  x  =  B ) )
12 maxabsle 11348 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  <_  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
132, 9, 12lensymd 8141 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  A )
14 breq2 4033 . . . . . . 7  |-  ( x  =  A  ->  (
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x  <->  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  <  A
) )
1514notbid 668 . . . . . 6  |-  ( x  =  A  ->  ( -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x  <->  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  A ) )
1613, 15syl5ibrcom 157 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  =  A  ->  -.  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  <  x
) )
17 maxabsle 11348 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  B  <_  ( (
( B  +  A
)  +  ( abs `  ( B  -  A
) ) )  / 
2 ) )
1817ancoms 268 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  ( (
( B  +  A
)  +  ( abs `  ( B  -  A
) ) )  / 
2 ) )
195, 3addcomd 8170 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  +  A
)  =  ( A  +  B ) )
205, 3abssubd 11337 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( B  -  A )
)  =  ( abs `  ( A  -  B
) ) )
2119, 20oveq12d 5936 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  +  A )  +  ( abs `  ( B  -  A ) ) )  =  ( ( A  +  B )  +  ( abs `  ( A  -  B )
) ) )
2221oveq1d 5933 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( B  +  A )  +  ( abs `  ( B  -  A )
) )  /  2
)  =  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
2318, 22breqtrd 4055 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
244, 9, 23lensymd 8141 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  B )
25 breq2 4033 . . . . . . 7  |-  ( x  =  B  ->  (
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x  <->  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  <  B
) )
2625notbid 668 . . . . . 6  |-  ( x  =  B  ->  ( -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x  <->  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  B ) )
2724, 26syl5ibrcom 157 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  =  B  ->  -.  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  <  x
) )
2816, 27jaod 718 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  =  A  \/  x  =  B )  ->  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x )
)
2911, 28biimtrid 152 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  { A ,  B }  ->  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x )
)
3029ralrimiv 2566 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. x  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x )
31 prid1g 3722 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  { A ,  B } )
3231ad4antr 494 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  /\  x  <  A )  ->  A  e.  { A ,  B } )
33 breq2 4033 . . . . . . 7  |-  ( z  =  A  ->  (
x  <  z  <->  x  <  A ) )
3433rspcev 2864 . . . . . 6  |-  ( ( A  e.  { A ,  B }  /\  x  <  A )  ->  E. z  e.  { A ,  B } x  <  z )
3532, 34sylancom 420 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  /\  x  <  A )  ->  E. z  e.  { A ,  B } x  <  z )
36 prid2g 3723 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  { A ,  B } )
3736ad4antlr 495 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  /\  x  <  B )  ->  B  e.  { A ,  B } )
38 breq2 4033 . . . . . . 7  |-  ( z  =  B  ->  (
x  <  z  <->  x  <  B ) )
3938rspcev 2864 . . . . . 6  |-  ( ( B  e.  { A ,  B }  /\  x  <  B )  ->  E. z  e.  { A ,  B } x  <  z )
4037, 39sylancom 420 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  /\  x  <  B )  ->  E. z  e.  { A ,  B } x  <  z )
412ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  A  e.  RR )
424ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  B  e.  RR )
43 simplr 528 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  x  e.  RR )
44 simpr 110 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )
4541, 42, 43, 44maxabslemlub 11351 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  (
x  <  A  \/  x  <  B ) )
4635, 40, 45mpjaodan 799 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  E. z  e.  { A ,  B } x  <  z )
4746ex 115 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( x  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } x  <  z ) )
4847ralrimiva 2567 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. x  e.  RR  ( x  <  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } x  <  z ) )
499, 30, 483jca 1179 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. x  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  x  /\  A. x  e.  RR  (
x  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } x  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   {cpr 3619   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   RRcr 7871    + caddc 7875    < clt 8054    <_ cle 8055    - cmin 8190    / cdiv 8691   2c2 9033   abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  maxabs  11353  maxleast  11357
  Copyright terms: Public domain W3C validator