ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxabslemval Unicode version

Theorem maxabslemval 10866
Description: Lemma for maxabs 10867. Value of the supremum. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxabslemval  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. x  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  x  /\  A. x  e.  RR  (
x  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } x  <  z ) ) )
Distinct variable groups:    x, A, z   
x, B, z

Proof of Theorem maxabslemval
StepHypRef Expression
1 readdcl 7664 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
2 simpl 108 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
32recnd 7712 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  CC )
4 simpr 109 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
54recnd 7712 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
63, 5subcld 7990 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  CC )
76abscld 10839 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( A  -  B )
)  e.  RR )
81, 7readdcld 7713 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  e.  RR )
98rehalfcld 8864 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR )
10 vex 2658 . . . . 5  |-  x  e. 
_V
1110elpr 3512 . . . 4  |-  ( x  e.  { A ,  B }  <->  ( x  =  A  \/  x  =  B ) )
12 maxabsle 10862 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  <_  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
132, 9, 12lensymd 7801 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  A )
14 breq2 3897 . . . . . . 7  |-  ( x  =  A  ->  (
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x  <->  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  <  A
) )
1514notbid 639 . . . . . 6  |-  ( x  =  A  ->  ( -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x  <->  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  A ) )
1613, 15syl5ibrcom 156 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  =  A  ->  -.  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  <  x
) )
17 maxabsle 10862 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  B  <_  ( (
( B  +  A
)  +  ( abs `  ( B  -  A
) ) )  / 
2 ) )
1817ancoms 266 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  ( (
( B  +  A
)  +  ( abs `  ( B  -  A
) ) )  / 
2 ) )
195, 3addcomd 7830 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  +  A
)  =  ( A  +  B ) )
205, 3abssubd 10851 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( B  -  A )
)  =  ( abs `  ( A  -  B
) ) )
2119, 20oveq12d 5744 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  +  A )  +  ( abs `  ( B  -  A ) ) )  =  ( ( A  +  B )  +  ( abs `  ( A  -  B )
) ) )
2221oveq1d 5741 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( B  +  A )  +  ( abs `  ( B  -  A )
) )  /  2
)  =  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
2318, 22breqtrd 3917 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
244, 9, 23lensymd 7801 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  B )
25 breq2 3897 . . . . . . 7  |-  ( x  =  B  ->  (
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x  <->  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  <  B
) )
2625notbid 639 . . . . . 6  |-  ( x  =  B  ->  ( -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x  <->  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  B ) )
2724, 26syl5ibrcom 156 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  =  B  ->  -.  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  <  x
) )
2816, 27jaod 689 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( x  =  A  \/  x  =  B )  ->  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x )
)
2911, 28syl5bi 151 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  { A ,  B }  ->  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x )
)
3029ralrimiv 2476 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. x  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  x )
31 prid1g 3591 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  { A ,  B } )
3231ad4antr 483 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  /\  x  <  A )  ->  A  e.  { A ,  B } )
33 breq2 3897 . . . . . . 7  |-  ( z  =  A  ->  (
x  <  z  <->  x  <  A ) )
3433rspcev 2758 . . . . . 6  |-  ( ( A  e.  { A ,  B }  /\  x  <  A )  ->  E. z  e.  { A ,  B } x  <  z )
3532, 34sylancom 414 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  /\  x  <  A )  ->  E. z  e.  { A ,  B } x  <  z )
36 prid2g 3592 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  { A ,  B } )
3736ad4antlr 484 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  /\  x  <  B )  ->  B  e.  { A ,  B } )
38 breq2 3897 . . . . . . 7  |-  ( z  =  B  ->  (
x  <  z  <->  x  <  B ) )
3938rspcev 2758 . . . . . 6  |-  ( ( B  e.  { A ,  B }  /\  x  <  B )  ->  E. z  e.  { A ,  B } x  <  z )
4037, 39sylancom 414 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  /\  x  <  B )  ->  E. z  e.  { A ,  B } x  <  z )
412ad2antrr 477 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  A  e.  RR )
424ad2antrr 477 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  B  e.  RR )
43 simplr 502 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  x  e.  RR )
44 simpr 109 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )
4541, 42, 43, 44maxabslemlub 10865 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  (
x  <  A  \/  x  <  B ) )
4635, 40, 45mpjaodan 770 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  /\  x  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  E. z  e.  { A ,  B } x  <  z )
4746ex 114 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  RR )  ->  ( x  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } x  <  z ) )
4847ralrimiva 2477 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. x  e.  RR  ( x  <  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } x  <  z ) )
499, 30, 483jca 1142 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. x  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  x  /\  A. x  e.  RR  (
x  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } x  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 680    /\ w3a 943    = wceq 1312    e. wcel 1461   A.wral 2388   E.wrex 2389   {cpr 3492   class class class wbr 3893   ` cfv 5079  (class class class)co 5726   RRcr 7540    + caddc 7544    < clt 7718    <_ cle 7719    - cmin 7850    / cdiv 8339   2c2 8675   abscabs 10655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657  ax-arch 7658  ax-caucvg 7659
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-3 8684  df-4 8685  df-n0 8876  df-z 8953  df-uz 9223  df-rp 9338  df-seqfrec 10106  df-exp 10180  df-cj 10501  df-re 10502  df-im 10503  df-rsqrt 10656  df-abs 10657
This theorem is referenced by:  maxabs  10867  maxleast  10871
  Copyright terms: Public domain W3C validator