ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arithlem1 Unicode version

Theorem 1arithlem1 12504
Description: Lemma for 1arith 12508. (Contributed by Mario Carneiro, 30-May-2014.)
Hypothesis
Ref Expression
1arith.1  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
Assertion
Ref Expression
1arithlem1  |-  ( N  e.  NN  ->  ( M `  N )  =  ( p  e. 
Prime  |->  ( p  pCnt  N ) ) )
Distinct variable group:    n, p, N
Allowed substitution hints:    M( n, p)

Proof of Theorem 1arithlem1
StepHypRef Expression
1 oveq2 5927 . . 3  |-  ( n  =  N  ->  (
p  pCnt  n )  =  ( p  pCnt  N ) )
21mpteq2dv 4121 . 2  |-  ( n  =  N  ->  (
p  e.  Prime  |->  ( p 
pCnt  n ) )  =  ( p  e.  Prime  |->  ( p  pCnt  N ) ) )
3 1arith.1 . 2  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
4 prmex 12254 . . 3  |-  Prime  e.  _V
54mptex 5785 . 2  |-  ( p  e.  Prime  |->  ( p 
pCnt  N ) )  e. 
_V
62, 3, 5fvmpt 5635 1  |-  ( N  e.  NN  ->  ( M `  N )  =  ( p  e. 
Prime  |->  ( p  pCnt  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    |-> cmpt 4091   ` cfv 5255  (class class class)co 5919   NNcn 8984   Primecprime 12248    pCnt cpc 12425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-inn 8985  df-prm 12249
This theorem is referenced by:  1arithlem2  12505  1arithlem3  12506
  Copyright terms: Public domain W3C validator