ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arithlem1 Unicode version

Theorem 1arithlem1 12289
Description: Lemma for 1arith 12293. (Contributed by Mario Carneiro, 30-May-2014.)
Hypothesis
Ref Expression
1arith.1  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
Assertion
Ref Expression
1arithlem1  |-  ( N  e.  NN  ->  ( M `  N )  =  ( p  e. 
Prime  |->  ( p  pCnt  N ) ) )
Distinct variable group:    n, p, N
Allowed substitution hints:    M( n, p)

Proof of Theorem 1arithlem1
StepHypRef Expression
1 oveq2 5849 . . 3  |-  ( n  =  N  ->  (
p  pCnt  n )  =  ( p  pCnt  N ) )
21mpteq2dv 4072 . 2  |-  ( n  =  N  ->  (
p  e.  Prime  |->  ( p 
pCnt  n ) )  =  ( p  e.  Prime  |->  ( p  pCnt  N ) ) )
3 1arith.1 . 2  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
4 prmex 12041 . . 3  |-  Prime  e.  _V
54mptex 5710 . 2  |-  ( p  e.  Prime  |->  ( p 
pCnt  N ) )  e. 
_V
62, 3, 5fvmpt 5562 1  |-  ( N  e.  NN  ->  ( M `  N )  =  ( p  e. 
Prime  |->  ( p  pCnt  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    |-> cmpt 4042   ` cfv 5187  (class class class)co 5841   NNcn 8853   Primecprime 12035    pCnt cpc 12212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-cnex 7840  ax-resscn 7841  ax-1re 7843  ax-addrcl 7846
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-ov 5844  df-inn 8854  df-prm 12036
This theorem is referenced by:  1arithlem2  12290  1arithlem3  12291
  Copyright terms: Public domain W3C validator