ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arithlem1 Unicode version

Theorem 1arithlem1 12395
Description: Lemma for 1arith 12399. (Contributed by Mario Carneiro, 30-May-2014.)
Hypothesis
Ref Expression
1arith.1  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
Assertion
Ref Expression
1arithlem1  |-  ( N  e.  NN  ->  ( M `  N )  =  ( p  e. 
Prime  |->  ( p  pCnt  N ) ) )
Distinct variable group:    n, p, N
Allowed substitution hints:    M( n, p)

Proof of Theorem 1arithlem1
StepHypRef Expression
1 oveq2 5904 . . 3  |-  ( n  =  N  ->  (
p  pCnt  n )  =  ( p  pCnt  N ) )
21mpteq2dv 4109 . 2  |-  ( n  =  N  ->  (
p  e.  Prime  |->  ( p 
pCnt  n ) )  =  ( p  e.  Prime  |->  ( p  pCnt  N ) ) )
3 1arith.1 . 2  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
4 prmex 12145 . . 3  |-  Prime  e.  _V
54mptex 5763 . 2  |-  ( p  e.  Prime  |->  ( p 
pCnt  N ) )  e. 
_V
62, 3, 5fvmpt 5614 1  |-  ( N  e.  NN  ->  ( M `  N )  =  ( p  e. 
Prime  |->  ( p  pCnt  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160    |-> cmpt 4079   ` cfv 5235  (class class class)co 5896   NNcn 8949   Primecprime 12139    pCnt cpc 12316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-cnex 7932  ax-resscn 7933  ax-1re 7935  ax-addrcl 7938
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-inn 8950  df-prm 12140
This theorem is referenced by:  1arithlem2  12396  1arithlem3  12397
  Copyright terms: Public domain W3C validator