Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prmex | GIF version |
Description: The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.) |
Ref | Expression |
---|---|
prmex | ⊢ ℙ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 8884 | . 2 ⊢ ℕ ∈ V | |
2 | prmssnn 12066 | . 2 ⊢ ℙ ⊆ ℕ | |
3 | 1, 2 | ssexi 4127 | 1 ⊢ ℙ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ℕcn 8878 ℙcprime 12061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-int 3832 df-br 3990 df-inn 8879 df-prm 12062 |
This theorem is referenced by: 1arithlem1 12315 1arith 12319 |
Copyright terms: Public domain | W3C validator |