ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmex GIF version

Theorem prmex 12080
Description: The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmex ℙ ∈ V

Proof of Theorem prmex
StepHypRef Expression
1 nnex 8898 . 2 ℕ ∈ V
2 prmssnn 12079 . 2 ℙ ⊆ ℕ
31, 2ssexi 4136 1 ℙ ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2146  Vcvv 2735  cn 8892  cprime 12074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-sep 4116  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rab 2462  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-op 3598  df-int 3841  df-br 3999  df-inn 8893  df-prm 12075
This theorem is referenced by:  1arithlem1  12328  1arith  12332
  Copyright terms: Public domain W3C validator