Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prmex | GIF version |
Description: The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.) |
Ref | Expression |
---|---|
prmex | ⊢ ℙ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 8898 | . 2 ⊢ ℕ ∈ V | |
2 | prmssnn 12079 | . 2 ⊢ ℙ ⊆ ℕ | |
3 | 1, 2 | ssexi 4136 | 1 ⊢ ℙ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 Vcvv 2735 ℕcn 8892 ℙcprime 12074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rab 2462 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-int 3841 df-br 3999 df-inn 8893 df-prm 12075 |
This theorem is referenced by: 1arithlem1 12328 1arith 12332 |
Copyright terms: Public domain | W3C validator |