| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmex | GIF version | ||
| Description: The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.) |
| Ref | Expression |
|---|---|
| prmex | ⊢ ℙ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 8996 | . 2 ⊢ ℕ ∈ V | |
| 2 | prmssnn 12280 | . 2 ⊢ ℙ ⊆ ℕ | |
| 3 | 1, 2 | ssexi 4171 | 1 ⊢ ℙ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℕcn 8990 ℙcprime 12275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-int 3875 df-br 4034 df-inn 8991 df-prm 12276 |
| This theorem is referenced by: 1arithlem1 12532 1arith 12536 |
| Copyright terms: Public domain | W3C validator |