![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1dc0el | GIF version |
Description: Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.) |
Ref | Expression |
---|---|
pw1dc0el | ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6443 | . . . . . . 7 ⊢ 1o = {∅} | |
2 | 1 | eqcomi 2191 | . . . . . 6 ⊢ {∅} = 1o |
3 | 2 | sseq2i 3194 | . . . . 5 ⊢ (𝑥 ⊆ {∅} ↔ 𝑥 ⊆ 1o) |
4 | velpw 3594 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
5 | 3, 4 | bitr4i 187 | . . . 4 ⊢ (𝑥 ⊆ {∅} ↔ 𝑥 ∈ 𝒫 1o) |
6 | 5 | imbi1i 238 | . . 3 ⊢ ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) |
7 | 6 | albii 1480 | . 2 ⊢ (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) |
8 | df-exmid 4207 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
9 | df-ral 2470 | . 2 ⊢ (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) | |
10 | 7, 8, 9 | 3bitr4i 212 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 DECID wdc 835 ∀wal 1361 ∈ wcel 2158 ∀wral 2465 ⊆ wss 3141 ∅c0 3434 𝒫 cpw 3587 {csn 3604 EXMIDwem 4206 1oc1o 6423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-exmid 4207 df-suc 4383 df-1o 6430 |
This theorem is referenced by: pw1dc1 6926 |
Copyright terms: Public domain | W3C validator |