Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1dc0el | GIF version |
Description: Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.) |
Ref | Expression |
---|---|
pw1dc0el | ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6370 | . . . . . . 7 ⊢ 1o = {∅} | |
2 | 1 | eqcomi 2161 | . . . . . 6 ⊢ {∅} = 1o |
3 | 2 | sseq2i 3155 | . . . . 5 ⊢ (𝑥 ⊆ {∅} ↔ 𝑥 ⊆ 1o) |
4 | velpw 3550 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
5 | 3, 4 | bitr4i 186 | . . . 4 ⊢ (𝑥 ⊆ {∅} ↔ 𝑥 ∈ 𝒫 1o) |
6 | 5 | imbi1i 237 | . . 3 ⊢ ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) |
7 | 6 | albii 1450 | . 2 ⊢ (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) |
8 | df-exmid 4155 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
9 | df-ral 2440 | . 2 ⊢ (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) | |
10 | 7, 8, 9 | 3bitr4i 211 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 DECID wdc 820 ∀wal 1333 ∈ wcel 2128 ∀wral 2435 ⊆ wss 3102 ∅c0 3394 𝒫 cpw 3543 {csn 3560 EXMIDwem 4154 1oc1o 6350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-exmid 4155 df-suc 4330 df-1o 6357 |
This theorem is referenced by: pw1dc1 6851 |
Copyright terms: Public domain | W3C validator |