| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1dc0el | GIF version | ||
| Description: Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| pw1dc0el | ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6582 | . . . . . . 7 ⊢ 1o = {∅} | |
| 2 | 1 | eqcomi 2233 | . . . . . 6 ⊢ {∅} = 1o |
| 3 | 2 | sseq2i 3251 | . . . . 5 ⊢ (𝑥 ⊆ {∅} ↔ 𝑥 ⊆ 1o) |
| 4 | velpw 3656 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
| 5 | 3, 4 | bitr4i 187 | . . . 4 ⊢ (𝑥 ⊆ {∅} ↔ 𝑥 ∈ 𝒫 1o) |
| 6 | 5 | imbi1i 238 | . . 3 ⊢ ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) |
| 7 | 6 | albii 1516 | . 2 ⊢ (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) |
| 8 | df-exmid 4279 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
| 9 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) | |
| 10 | 7, 8, 9 | 3bitr4i 212 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 DECID wdc 839 ∀wal 1393 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ∅c0 3491 𝒫 cpw 3649 {csn 3666 EXMIDwem 4278 1oc1o 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-exmid 4279 df-suc 4462 df-1o 6568 |
| This theorem is referenced by: pw1dc1 7084 |
| Copyright terms: Public domain | W3C validator |