![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1dc0el | GIF version |
Description: Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.) |
Ref | Expression |
---|---|
pw1dc0el | ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6482 | . . . . . . 7 ⊢ 1o = {∅} | |
2 | 1 | eqcomi 2197 | . . . . . 6 ⊢ {∅} = 1o |
3 | 2 | sseq2i 3206 | . . . . 5 ⊢ (𝑥 ⊆ {∅} ↔ 𝑥 ⊆ 1o) |
4 | velpw 3608 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
5 | 3, 4 | bitr4i 187 | . . . 4 ⊢ (𝑥 ⊆ {∅} ↔ 𝑥 ∈ 𝒫 1o) |
6 | 5 | imbi1i 238 | . . 3 ⊢ ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) |
7 | 6 | albii 1481 | . 2 ⊢ (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) |
8 | df-exmid 4224 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
9 | df-ral 2477 | . 2 ⊢ (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) | |
10 | 7, 8, 9 | 3bitr4i 212 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 DECID wdc 835 ∀wal 1362 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 ∅c0 3446 𝒫 cpw 3601 {csn 3618 EXMIDwem 4223 1oc1o 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-exmid 4224 df-suc 4402 df-1o 6469 |
This theorem is referenced by: pw1dc1 6970 |
Copyright terms: Public domain | W3C validator |