| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pw1dc0el | GIF version | ||
| Description: Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| pw1dc0el | ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df1o2 6487 | . . . . . . 7 ⊢ 1o = {∅} | |
| 2 | 1 | eqcomi 2200 | . . . . . 6 ⊢ {∅} = 1o | 
| 3 | 2 | sseq2i 3210 | . . . . 5 ⊢ (𝑥 ⊆ {∅} ↔ 𝑥 ⊆ 1o) | 
| 4 | velpw 3612 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
| 5 | 3, 4 | bitr4i 187 | . . . 4 ⊢ (𝑥 ⊆ {∅} ↔ 𝑥 ∈ 𝒫 1o) | 
| 6 | 5 | imbi1i 238 | . . 3 ⊢ ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) | 
| 7 | 6 | albii 1484 | . 2 ⊢ (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) | 
| 8 | df-exmid 4228 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
| 9 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝒫 1o → DECID ∅ ∈ 𝑥)) | |
| 10 | 7, 8, 9 | 3bitr4i 212 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 DECID wdc 835 ∀wal 1362 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ∅c0 3450 𝒫 cpw 3605 {csn 3622 EXMIDwem 4227 1oc1o 6467 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-exmid 4228 df-suc 4406 df-1o 6474 | 
| This theorem is referenced by: pw1dc1 6975 | 
| Copyright terms: Public domain | W3C validator |