ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1dc0el GIF version

Theorem pw1dc0el 6972
Description: Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.)
Assertion
Ref Expression
pw1dc0el (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥)

Proof of Theorem pw1dc0el
StepHypRef Expression
1 df1o2 6487 . . . . . . 7 1o = {∅}
21eqcomi 2200 . . . . . 6 {∅} = 1o
32sseq2i 3210 . . . . 5 (𝑥 ⊆ {∅} ↔ 𝑥 ⊆ 1o)
4 velpw 3612 . . . . 5 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
53, 4bitr4i 187 . . . 4 (𝑥 ⊆ {∅} ↔ 𝑥 ∈ 𝒫 1o)
65imbi1i 238 . . 3 ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥))
76albii 1484 . 2 (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥))
8 df-exmid 4228 . 2 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
9 df-ral 2480 . 2 (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥))
107, 8, 93bitr4i 212 1 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 835  wal 1362  wcel 2167  wral 2475  wss 3157  c0 3450  𝒫 cpw 3605  {csn 3622  EXMIDwem 4227  1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-exmid 4228  df-suc 4406  df-1o 6474
This theorem is referenced by:  pw1dc1  6975
  Copyright terms: Public domain W3C validator