ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1dc0el GIF version

Theorem pw1dc0el 6924
Description: Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.)
Assertion
Ref Expression
pw1dc0el (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥)

Proof of Theorem pw1dc0el
StepHypRef Expression
1 df1o2 6443 . . . . . . 7 1o = {∅}
21eqcomi 2191 . . . . . 6 {∅} = 1o
32sseq2i 3194 . . . . 5 (𝑥 ⊆ {∅} ↔ 𝑥 ⊆ 1o)
4 velpw 3594 . . . . 5 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
53, 4bitr4i 187 . . . 4 (𝑥 ⊆ {∅} ↔ 𝑥 ∈ 𝒫 1o)
65imbi1i 238 . . 3 ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥))
76albii 1480 . 2 (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥))
8 df-exmid 4207 . 2 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
9 df-ral 2470 . 2 (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥))
107, 8, 93bitr4i 212 1 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 835  wal 1361  wcel 2158  wral 2465  wss 3141  c0 3434  𝒫 cpw 3587  {csn 3604  EXMIDwem 4206  1oc1o 6423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-exmid 4207  df-suc 4383  df-1o 6430
This theorem is referenced by:  pw1dc1  6926
  Copyright terms: Public domain W3C validator