| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1ndom3lem | Unicode version | ||
| Description: Lemma for pw1ndom3 16383. (Contributed by Jim Kingdon, 14-Feb-2026.) |
| Ref | Expression |
|---|---|
| pw1ndom3lem.x |
|
| pw1ndom3lem.y |
|
| pw1ndom3lem.z |
|
| pw1ndom3lem.xy |
|
| pw1ndom3lem.xz |
|
| pw1ndom3lem.yz |
|
| Ref | Expression |
|---|---|
| pw1ndom3lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1ndom3lem.x |
. . . 4
| |
| 2 | 1 | elpwid 3660 |
. . 3
|
| 3 | df1o2 6582 |
. . 3
| |
| 4 | 2, 3 | sseqtrdi 3272 |
. 2
|
| 5 | pw1ndom3lem.y |
. . . . . . . . . 10
| |
| 6 | 5 | elpwid 3660 |
. . . . . . . . 9
|
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | 7, 3 | sseqtrdi 3272 |
. . . . . . 7
|
| 9 | pw1ndom3lem.xy |
. . . . . . . . . . 11
| |
| 10 | 9 | adantr 276 |
. . . . . . . . . 10
|
| 11 | neeq1 2413 |
. . . . . . . . . . 11
| |
| 12 | 11 | adantl 277 |
. . . . . . . . . 10
|
| 13 | 10, 12 | mpbid 147 |
. . . . . . . . 9
|
| 14 | 13 | necomd 2486 |
. . . . . . . 8
|
| 15 | 3 | a1i 9 |
. . . . . . . 8
|
| 16 | 14, 15 | neeqtrd 2428 |
. . . . . . 7
|
| 17 | pwntru 4283 |
. . . . . . 7
| |
| 18 | 8, 16, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | pw1ndom3lem.z |
. . . . . . . . . 10
| |
| 20 | 19 | elpwid 3660 |
. . . . . . . . 9
|
| 21 | 20 | adantr 276 |
. . . . . . . 8
|
| 22 | 21, 3 | sseqtrdi 3272 |
. . . . . . 7
|
| 23 | pw1ndom3lem.xz |
. . . . . . . . . . 11
| |
| 24 | 23 | adantr 276 |
. . . . . . . . . 10
|
| 25 | neeq1 2413 |
. . . . . . . . . . 11
| |
| 26 | 25 | adantl 277 |
. . . . . . . . . 10
|
| 27 | 24, 26 | mpbid 147 |
. . . . . . . . 9
|
| 28 | 27 | necomd 2486 |
. . . . . . . 8
|
| 29 | 28, 15 | neeqtrd 2428 |
. . . . . . 7
|
| 30 | pwntru 4283 |
. . . . . . 7
| |
| 31 | 22, 29, 30 | syl2anc 411 |
. . . . . 6
|
| 32 | 18, 31 | eqtr4d 2265 |
. . . . 5
|
| 33 | pw1ndom3lem.yz |
. . . . . . 7
| |
| 34 | 33 | adantr 276 |
. . . . . 6
|
| 35 | 34 | neneqd 2421 |
. . . . 5
|
| 36 | 32, 35 | pm2.65da 665 |
. . . 4
|
| 37 | 36 | neqned 2407 |
. . 3
|
| 38 | 3 | a1i 9 |
. . 3
|
| 39 | 37, 38 | neeqtrd 2428 |
. 2
|
| 40 | pwntru 4283 |
. 2
| |
| 41 | 4, 39, 40 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-suc 4462 df-1o 6568 |
| This theorem is referenced by: pw1ndom3 16383 |
| Copyright terms: Public domain | W3C validator |