Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pw1ndom3lem Unicode version

Theorem pw1ndom3lem 16382
Description: Lemma for pw1ndom3 16383. (Contributed by Jim Kingdon, 14-Feb-2026.)
Hypotheses
Ref Expression
pw1ndom3lem.x  |-  ( ph  ->  X  e.  ~P 1o )
pw1ndom3lem.y  |-  ( ph  ->  Y  e.  ~P 1o )
pw1ndom3lem.z  |-  ( ph  ->  Z  e.  ~P 1o )
pw1ndom3lem.xy  |-  ( ph  ->  X  =/=  Y )
pw1ndom3lem.xz  |-  ( ph  ->  X  =/=  Z )
pw1ndom3lem.yz  |-  ( ph  ->  Y  =/=  Z )
Assertion
Ref Expression
pw1ndom3lem  |-  ( ph  ->  X  =  (/) )

Proof of Theorem pw1ndom3lem
StepHypRef Expression
1 pw1ndom3lem.x . . . 4  |-  ( ph  ->  X  e.  ~P 1o )
21elpwid 3660 . . 3  |-  ( ph  ->  X  C_  1o )
3 df1o2 6582 . . 3  |-  1o  =  { (/) }
42, 3sseqtrdi 3272 . 2  |-  ( ph  ->  X  C_  { (/) } )
5 pw1ndom3lem.y . . . . . . . . . 10  |-  ( ph  ->  Y  e.  ~P 1o )
65elpwid 3660 . . . . . . . . 9  |-  ( ph  ->  Y  C_  1o )
76adantr 276 . . . . . . . 8  |-  ( (
ph  /\  X  =  1o )  ->  Y  C_  1o )
87, 3sseqtrdi 3272 . . . . . . 7  |-  ( (
ph  /\  X  =  1o )  ->  Y  C_  {
(/) } )
9 pw1ndom3lem.xy . . . . . . . . . . 11  |-  ( ph  ->  X  =/=  Y )
109adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  X  =  1o )  ->  X  =/= 
Y )
11 neeq1 2413 . . . . . . . . . . 11  |-  ( X  =  1o  ->  ( X  =/=  Y  <->  1o  =/=  Y ) )
1211adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  X  =  1o )  ->  ( X  =/=  Y  <->  1o  =/=  Y ) )
1310, 12mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  X  =  1o )  ->  1o  =/=  Y )
1413necomd 2486 . . . . . . . 8  |-  ( (
ph  /\  X  =  1o )  ->  Y  =/= 
1o )
153a1i 9 . . . . . . . 8  |-  ( (
ph  /\  X  =  1o )  ->  1o  =  { (/) } )
1614, 15neeqtrd 2428 . . . . . . 7  |-  ( (
ph  /\  X  =  1o )  ->  Y  =/= 
{ (/) } )
17 pwntru 4283 . . . . . . 7  |-  ( ( Y  C_  { (/) }  /\  Y  =/=  { (/) } )  ->  Y  =  (/) )
188, 16, 17syl2anc 411 . . . . . 6  |-  ( (
ph  /\  X  =  1o )  ->  Y  =  (/) )
19 pw1ndom3lem.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  ~P 1o )
2019elpwid 3660 . . . . . . . . 9  |-  ( ph  ->  Z  C_  1o )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  X  =  1o )  ->  Z  C_  1o )
2221, 3sseqtrdi 3272 . . . . . . 7  |-  ( (
ph  /\  X  =  1o )  ->  Z  C_  {
(/) } )
23 pw1ndom3lem.xz . . . . . . . . . . 11  |-  ( ph  ->  X  =/=  Z )
2423adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  X  =  1o )  ->  X  =/= 
Z )
25 neeq1 2413 . . . . . . . . . . 11  |-  ( X  =  1o  ->  ( X  =/=  Z  <->  1o  =/=  Z ) )
2625adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  X  =  1o )  ->  ( X  =/=  Z  <->  1o  =/=  Z ) )
2724, 26mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  X  =  1o )  ->  1o  =/=  Z )
2827necomd 2486 . . . . . . . 8  |-  ( (
ph  /\  X  =  1o )  ->  Z  =/= 
1o )
2928, 15neeqtrd 2428 . . . . . . 7  |-  ( (
ph  /\  X  =  1o )  ->  Z  =/= 
{ (/) } )
30 pwntru 4283 . . . . . . 7  |-  ( ( Z  C_  { (/) }  /\  Z  =/=  { (/) } )  ->  Z  =  (/) )
3122, 29, 30syl2anc 411 . . . . . 6  |-  ( (
ph  /\  X  =  1o )  ->  Z  =  (/) )
3218, 31eqtr4d 2265 . . . . 5  |-  ( (
ph  /\  X  =  1o )  ->  Y  =  Z )
33 pw1ndom3lem.yz . . . . . . 7  |-  ( ph  ->  Y  =/=  Z )
3433adantr 276 . . . . . 6  |-  ( (
ph  /\  X  =  1o )  ->  Y  =/= 
Z )
3534neneqd 2421 . . . . 5  |-  ( (
ph  /\  X  =  1o )  ->  -.  Y  =  Z )
3632, 35pm2.65da 665 . . . 4  |-  ( ph  ->  -.  X  =  1o )
3736neqned 2407 . . 3  |-  ( ph  ->  X  =/=  1o )
383a1i 9 . . 3  |-  ( ph  ->  1o  =  { (/) } )
3937, 38neeqtrd 2428 . 2  |-  ( ph  ->  X  =/=  { (/) } )
40 pwntru 4283 . 2  |-  ( ( X  C_  { (/) }  /\  X  =/=  { (/) } )  ->  X  =  (/) )
414, 39, 40syl2anc 411 1  |-  ( ph  ->  X  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    =/= wne 2400    C_ wss 3197   (/)c0 3491   ~Pcpw 3649   {csn 3666   1oc1o 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-suc 4462  df-1o 6568
This theorem is referenced by:  pw1ndom3  16383
  Copyright terms: Public domain W3C validator