Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pw1ndom3 Unicode version

Theorem pw1ndom3 16383
Description: The powerset of  1o does not dominate  3o. This is another way of saying that  ~P 1o does not have three elements (like pwntru 4283). (Contributed by Steven Nguyen and Jim Kingdon, 14-Feb-2026.)
Assertion
Ref Expression
pw1ndom3  |-  -.  3o  ~<_  ~P 1o

Proof of Theorem pw1ndom3
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dom 16381 . . 3  |-  ( 3o  ~<_  ~P 1o  ->  E. x  e.  ~P  1o E. y  e.  ~P  1o E. z  e.  ~P  1o ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )
2 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  ->  x  e.  ~P 1o )
3 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  -> 
y  e.  ~P 1o )
4 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  -> 
z  e.  ~P 1o )
5 simpr1 1027 . . . . . . . . . 10  |-  ( ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  ->  x  =/=  y )
6 simpr2 1028 . . . . . . . . . 10  |-  ( ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  ->  x  =/=  z )
7 simpr3 1029 . . . . . . . . . 10  |-  ( ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  -> 
y  =/=  z )
82, 3, 4, 5, 6, 7pw1ndom3lem 16382 . . . . . . . . 9  |-  ( ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  ->  x  =  (/) )
95necomd 2486 . . . . . . . . . 10  |-  ( ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  -> 
y  =/=  x )
103, 2, 4, 9, 7, 6pw1ndom3lem 16382 . . . . . . . . 9  |-  ( ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  -> 
y  =  (/) )
118, 10eqtr4d 2265 . . . . . . . 8  |-  ( ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  ->  x  =  y )
1211, 5pm2.21ddne 2483 . . . . . . 7  |-  ( ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  -> F.  )
1312ex 115 . . . . . 6  |-  ( ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  /\  z  e.  ~P 1o )  -> 
( ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z )  -> F.  ) )
1413rexlimdva 2648 . . . . 5  |-  ( ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  /\  y  e.  ~P 1o )  ->  ( E. z  e.  ~P  1o ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z
)  -> F.  )
)
1514rexlimdva 2648 . . . 4  |-  ( ( 3o  ~<_  ~P 1o  /\  x  e.  ~P 1o )  -> 
( E. y  e. 
~P  1o E. z  e.  ~P  1o ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z )  -> F.  ) )
1615rexlimdva 2648 . . 3  |-  ( 3o  ~<_  ~P 1o  ->  ( E. x  e.  ~P  1o E. y  e.  ~P  1o E. z  e.  ~P  1o ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z
)  -> F.  )
)
171, 16mpd 13 . 2  |-  ( 3o  ~<_  ~P 1o  -> F.  )
18 dfnot 1413 . 2  |-  ( -.  3o  ~<_  ~P 1o  <->  ( 3o  ~<_  ~P 1o  -> F.  )
)
1917, 18mpbir 146 1  |-  -.  3o  ~<_  ~P 1o
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 1002   F. wfal 1400    e. wcel 2200    =/= wne 2400   E.wrex 2509   (/)c0 3491   ~Pcpw 3649   class class class wbr 4083   1oc1o 6561   3oc3o 6563    ~<_ cdom 6894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fv 5326  df-1o 6568  df-2o 6569  df-3o 6570  df-dom 6897
This theorem is referenced by:  pw1ninf  16384
  Copyright terms: Public domain W3C validator