Proof of Theorem pw1ndom3lem
| Step | Hyp | Ref
| Expression |
| 1 | | pw1ndom3lem.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝒫
1o) |
| 2 | 1 | elpwid 3660 |
. . 3
⊢ (𝜑 → 𝑋 ⊆ 1o) |
| 3 | | df1o2 6582 |
. . 3
⊢
1o = {∅} |
| 4 | 2, 3 | sseqtrdi 3272 |
. 2
⊢ (𝜑 → 𝑋 ⊆ {∅}) |
| 5 | | pw1ndom3lem.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝒫
1o) |
| 6 | 5 | elpwid 3660 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ⊆ 1o) |
| 7 | 6 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑌 ⊆ 1o) |
| 8 | 7, 3 | sseqtrdi 3272 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑌 ⊆ {∅}) |
| 9 | | pw1ndom3lem.xy |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| 10 | 9 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑋 ≠ 𝑌) |
| 11 | | neeq1 2413 |
. . . . . . . . . . 11
⊢ (𝑋 = 1o → (𝑋 ≠ 𝑌 ↔ 1o ≠ 𝑌)) |
| 12 | 11 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 1o) → (𝑋 ≠ 𝑌 ↔ 1o ≠ 𝑌)) |
| 13 | 10, 12 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 1o) → 1o ≠
𝑌) |
| 14 | 13 | necomd 2486 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑌 ≠ 1o) |
| 15 | 3 | a1i 9 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 1o) → 1o =
{∅}) |
| 16 | 14, 15 | neeqtrd 2428 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑌 ≠ {∅}) |
| 17 | | pwntru 4283 |
. . . . . . 7
⊢ ((𝑌 ⊆ {∅} ∧ 𝑌 ≠ {∅}) → 𝑌 = ∅) |
| 18 | 8, 16, 17 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑌 = ∅) |
| 19 | | pw1ndom3lem.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ 𝒫
1o) |
| 20 | 19 | elpwid 3660 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ⊆ 1o) |
| 21 | 20 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑍 ⊆ 1o) |
| 22 | 21, 3 | sseqtrdi 3272 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑍 ⊆ {∅}) |
| 23 | | pw1ndom3lem.xz |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ≠ 𝑍) |
| 24 | 23 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑋 ≠ 𝑍) |
| 25 | | neeq1 2413 |
. . . . . . . . . . 11
⊢ (𝑋 = 1o → (𝑋 ≠ 𝑍 ↔ 1o ≠ 𝑍)) |
| 26 | 25 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 1o) → (𝑋 ≠ 𝑍 ↔ 1o ≠ 𝑍)) |
| 27 | 24, 26 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 1o) → 1o ≠
𝑍) |
| 28 | 27 | necomd 2486 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑍 ≠ 1o) |
| 29 | 28, 15 | neeqtrd 2428 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑍 ≠ {∅}) |
| 30 | | pwntru 4283 |
. . . . . . 7
⊢ ((𝑍 ⊆ {∅} ∧ 𝑍 ≠ {∅}) → 𝑍 = ∅) |
| 31 | 22, 29, 30 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑍 = ∅) |
| 32 | 18, 31 | eqtr4d 2265 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑌 = 𝑍) |
| 33 | | pw1ndom3lem.yz |
. . . . . . 7
⊢ (𝜑 → 𝑌 ≠ 𝑍) |
| 34 | 33 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 1o) → 𝑌 ≠ 𝑍) |
| 35 | 34 | neneqd 2421 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 1o) → ¬ 𝑌 = 𝑍) |
| 36 | 32, 35 | pm2.65da 665 |
. . . 4
⊢ (𝜑 → ¬ 𝑋 = 1o) |
| 37 | 36 | neqned 2407 |
. . 3
⊢ (𝜑 → 𝑋 ≠ 1o) |
| 38 | 3 | a1i 9 |
. . 3
⊢ (𝜑 → 1o =
{∅}) |
| 39 | 37, 38 | neeqtrd 2428 |
. 2
⊢ (𝜑 → 𝑋 ≠ {∅}) |
| 40 | | pwntru 4283 |
. 2
⊢ ((𝑋 ⊆ {∅} ∧ 𝑋 ≠ {∅}) → 𝑋 = ∅) |
| 41 | 4, 39, 40 | syl2anc 411 |
1
⊢ (𝜑 → 𝑋 = ∅) |