Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pw1ndom3lem GIF version

Theorem pw1ndom3lem 16382
Description: Lemma for pw1ndom3 16383. (Contributed by Jim Kingdon, 14-Feb-2026.)
Hypotheses
Ref Expression
pw1ndom3lem.x (𝜑𝑋 ∈ 𝒫 1o)
pw1ndom3lem.y (𝜑𝑌 ∈ 𝒫 1o)
pw1ndom3lem.z (𝜑𝑍 ∈ 𝒫 1o)
pw1ndom3lem.xy (𝜑𝑋𝑌)
pw1ndom3lem.xz (𝜑𝑋𝑍)
pw1ndom3lem.yz (𝜑𝑌𝑍)
Assertion
Ref Expression
pw1ndom3lem (𝜑𝑋 = ∅)

Proof of Theorem pw1ndom3lem
StepHypRef Expression
1 pw1ndom3lem.x . . . 4 (𝜑𝑋 ∈ 𝒫 1o)
21elpwid 3660 . . 3 (𝜑𝑋 ⊆ 1o)
3 df1o2 6582 . . 3 1o = {∅}
42, 3sseqtrdi 3272 . 2 (𝜑𝑋 ⊆ {∅})
5 pw1ndom3lem.y . . . . . . . . . 10 (𝜑𝑌 ∈ 𝒫 1o)
65elpwid 3660 . . . . . . . . 9 (𝜑𝑌 ⊆ 1o)
76adantr 276 . . . . . . . 8 ((𝜑𝑋 = 1o) → 𝑌 ⊆ 1o)
87, 3sseqtrdi 3272 . . . . . . 7 ((𝜑𝑋 = 1o) → 𝑌 ⊆ {∅})
9 pw1ndom3lem.xy . . . . . . . . . . 11 (𝜑𝑋𝑌)
109adantr 276 . . . . . . . . . 10 ((𝜑𝑋 = 1o) → 𝑋𝑌)
11 neeq1 2413 . . . . . . . . . . 11 (𝑋 = 1o → (𝑋𝑌 ↔ 1o𝑌))
1211adantl 277 . . . . . . . . . 10 ((𝜑𝑋 = 1o) → (𝑋𝑌 ↔ 1o𝑌))
1310, 12mpbid 147 . . . . . . . . 9 ((𝜑𝑋 = 1o) → 1o𝑌)
1413necomd 2486 . . . . . . . 8 ((𝜑𝑋 = 1o) → 𝑌 ≠ 1o)
153a1i 9 . . . . . . . 8 ((𝜑𝑋 = 1o) → 1o = {∅})
1614, 15neeqtrd 2428 . . . . . . 7 ((𝜑𝑋 = 1o) → 𝑌 ≠ {∅})
17 pwntru 4283 . . . . . . 7 ((𝑌 ⊆ {∅} ∧ 𝑌 ≠ {∅}) → 𝑌 = ∅)
188, 16, 17syl2anc 411 . . . . . 6 ((𝜑𝑋 = 1o) → 𝑌 = ∅)
19 pw1ndom3lem.z . . . . . . . . . 10 (𝜑𝑍 ∈ 𝒫 1o)
2019elpwid 3660 . . . . . . . . 9 (𝜑𝑍 ⊆ 1o)
2120adantr 276 . . . . . . . 8 ((𝜑𝑋 = 1o) → 𝑍 ⊆ 1o)
2221, 3sseqtrdi 3272 . . . . . . 7 ((𝜑𝑋 = 1o) → 𝑍 ⊆ {∅})
23 pw1ndom3lem.xz . . . . . . . . . . 11 (𝜑𝑋𝑍)
2423adantr 276 . . . . . . . . . 10 ((𝜑𝑋 = 1o) → 𝑋𝑍)
25 neeq1 2413 . . . . . . . . . . 11 (𝑋 = 1o → (𝑋𝑍 ↔ 1o𝑍))
2625adantl 277 . . . . . . . . . 10 ((𝜑𝑋 = 1o) → (𝑋𝑍 ↔ 1o𝑍))
2724, 26mpbid 147 . . . . . . . . 9 ((𝜑𝑋 = 1o) → 1o𝑍)
2827necomd 2486 . . . . . . . 8 ((𝜑𝑋 = 1o) → 𝑍 ≠ 1o)
2928, 15neeqtrd 2428 . . . . . . 7 ((𝜑𝑋 = 1o) → 𝑍 ≠ {∅})
30 pwntru 4283 . . . . . . 7 ((𝑍 ⊆ {∅} ∧ 𝑍 ≠ {∅}) → 𝑍 = ∅)
3122, 29, 30syl2anc 411 . . . . . 6 ((𝜑𝑋 = 1o) → 𝑍 = ∅)
3218, 31eqtr4d 2265 . . . . 5 ((𝜑𝑋 = 1o) → 𝑌 = 𝑍)
33 pw1ndom3lem.yz . . . . . . 7 (𝜑𝑌𝑍)
3433adantr 276 . . . . . 6 ((𝜑𝑋 = 1o) → 𝑌𝑍)
3534neneqd 2421 . . . . 5 ((𝜑𝑋 = 1o) → ¬ 𝑌 = 𝑍)
3632, 35pm2.65da 665 . . . 4 (𝜑 → ¬ 𝑋 = 1o)
3736neqned 2407 . . 3 (𝜑𝑋 ≠ 1o)
383a1i 9 . . 3 (𝜑 → 1o = {∅})
3937, 38neeqtrd 2428 . 2 (𝜑𝑋 ≠ {∅})
40 pwntru 4283 . 2 ((𝑋 ⊆ {∅} ∧ 𝑋 ≠ {∅}) → 𝑋 = ∅)
414, 39, 40syl2anc 411 1 (𝜑𝑋 = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wss 3197  c0 3491  𝒫 cpw 3649  {csn 3666  1oc1o 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-suc 4462  df-1o 6568
This theorem is referenced by:  pw1ndom3  16383
  Copyright terms: Public domain W3C validator