Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  3dom Unicode version

Theorem 3dom 16381
Description: A set that dominates ordinal 3 has at least 3 different members. (Contributed by Jim Kingdon, 12-Feb-2026.)
Assertion
Ref Expression
3dom  |-  ( 3o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  E. z  e.  A  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )
Distinct variable group:    x, y, z, A

Proof of Theorem 3dom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6906 . 2  |-  ( 3o  ~<_  A  ->  E. f 
f : 3o -1-1-> A
)
2 f1f 5533 . . . . 5  |-  ( f : 3o -1-1-> A  -> 
f : 3o --> A )
32adantl 277 . . . 4  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  -> 
f : 3o --> A )
4 0lt2o 6595 . . . . . . 7  |-  (/)  e.  2o
5 elelsuc 4500 . . . . . . 7  |-  ( (/)  e.  2o  ->  (/)  e.  suc  2o )
64, 5ax-mp 5 . . . . . 6  |-  (/)  e.  suc  2o
7 df-3o 6570 . . . . . 6  |-  3o  =  suc  2o
86, 7eleqtrri 2305 . . . . 5  |-  (/)  e.  3o
98a1i 9 . . . 4  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  ->  (/) 
e.  3o )
103, 9ffvelcdmd 5773 . . 3  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  -> 
( f `  (/) )  e.  A )
11 1lt2o 6596 . . . . . . . 8  |-  1o  e.  2o
12 elelsuc 4500 . . . . . . . 8  |-  ( 1o  e.  2o  ->  1o  e.  suc  2o )
1311, 12ax-mp 5 . . . . . . 7  |-  1o  e.  suc  2o
1413, 7eleqtrri 2305 . . . . . 6  |-  1o  e.  3o
1514a1i 9 . . . . 5  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  ->  1o  e.  3o )
163, 15ffvelcdmd 5773 . . . 4  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  -> 
( f `  1o )  e.  A )
17 2onn 6675 . . . . . . . . . 10  |-  2o  e.  om
1817elexi 2812 . . . . . . . . 9  |-  2o  e.  _V
1918sucid 4508 . . . . . . . 8  |-  2o  e.  suc  2o
2019, 7eleqtrri 2305 . . . . . . 7  |-  2o  e.  3o
2120a1i 9 . . . . . 6  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  ->  2o  e.  3o )
223, 21ffvelcdmd 5773 . . . . 5  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  -> 
( f `  2o )  e.  A )
23 1n0 6586 . . . . . . . . . 10  |-  1o  =/=  (/)
2423nesymi 2446 . . . . . . . . 9  |-  -.  (/)  =  1o
25 f1veqaeq 5899 . . . . . . . . 9  |-  ( ( f : 3o -1-1-> A  /\  ( (/)  e.  3o  /\  1o  e.  3o ) )  ->  ( (
f `  (/) )  =  ( f `  1o )  ->  (/)  =  1o ) )
2624, 25mtoi 668 . . . . . . . 8  |-  ( ( f : 3o -1-1-> A  /\  ( (/)  e.  3o  /\  1o  e.  3o ) )  ->  -.  (
f `  (/) )  =  ( f `  1o ) )
278, 14, 26mpanr12 439 . . . . . . 7  |-  ( f : 3o -1-1-> A  ->  -.  ( f `  (/) )  =  ( f `  1o ) )
2827neqned 2407 . . . . . 6  |-  ( f : 3o -1-1-> A  -> 
( f `  (/) )  =/=  ( f `  1o ) )
2928adantl 277 . . . . 5  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  -> 
( f `  (/) )  =/=  ( f `  1o ) )
30 2on0 6578 . . . . . . . . . 10  |-  2o  =/=  (/)
3130nesymi 2446 . . . . . . . . 9  |-  -.  (/)  =  2o
32 f1veqaeq 5899 . . . . . . . . 9  |-  ( ( f : 3o -1-1-> A  /\  ( (/)  e.  3o  /\  2o  e.  3o ) )  ->  ( (
f `  (/) )  =  ( f `  2o )  ->  (/)  =  2o ) )
3331, 32mtoi 668 . . . . . . . 8  |-  ( ( f : 3o -1-1-> A  /\  ( (/)  e.  3o  /\  2o  e.  3o ) )  ->  -.  (
f `  (/) )  =  ( f `  2o ) )
348, 20, 33mpanr12 439 . . . . . . 7  |-  ( f : 3o -1-1-> A  ->  -.  ( f `  (/) )  =  ( f `  2o ) )
3534neqned 2407 . . . . . 6  |-  ( f : 3o -1-1-> A  -> 
( f `  (/) )  =/=  ( f `  2o ) )
3635adantl 277 . . . . 5  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  -> 
( f `  (/) )  =/=  ( f `  2o ) )
37 nnord 4704 . . . . . . . . . . . . 13  |-  ( 2o  e.  om  ->  Ord  2o )
3817, 37ax-mp 5 . . . . . . . . . . . 12  |-  Ord  2o
39 ordirr 4634 . . . . . . . . . . . 12  |-  ( Ord 
2o  ->  -.  2o  e.  2o )
4038, 39ax-mp 5 . . . . . . . . . . 11  |-  -.  2o  e.  2o
41 eleq1 2292 . . . . . . . . . . 11  |-  ( 1o  =  2o  ->  ( 1o  e.  2o  <->  2o  e.  2o ) )
4240, 41mtbiri 679 . . . . . . . . . 10  |-  ( 1o  =  2o  ->  -.  1o  e.  2o )
4311, 42mt2 643 . . . . . . . . 9  |-  -.  1o  =  2o
44 f1veqaeq 5899 . . . . . . . . 9  |-  ( ( f : 3o -1-1-> A  /\  ( 1o  e.  3o  /\  2o  e.  3o ) )  ->  ( (
f `  1o )  =  ( f `  2o )  ->  1o  =  2o ) )
4543, 44mtoi 668 . . . . . . . 8  |-  ( ( f : 3o -1-1-> A  /\  ( 1o  e.  3o  /\  2o  e.  3o ) )  ->  -.  (
f `  1o )  =  ( f `  2o ) )
4614, 20, 45mpanr12 439 . . . . . . 7  |-  ( f : 3o -1-1-> A  ->  -.  ( f `  1o )  =  ( f `  2o ) )
4746neqned 2407 . . . . . 6  |-  ( f : 3o -1-1-> A  -> 
( f `  1o )  =/=  ( f `  2o ) )
4847adantl 277 . . . . 5  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  -> 
( f `  1o )  =/=  ( f `  2o ) )
49 neeq2 2414 . . . . . . 7  |-  ( z  =  ( f `  2o )  ->  ( ( f `  (/) )  =/=  z  <->  ( f `  (/) )  =/=  ( f `
 2o ) ) )
50 neeq2 2414 . . . . . . 7  |-  ( z  =  ( f `  2o )  ->  ( ( f `  1o )  =/=  z  <->  ( f `  1o )  =/=  (
f `  2o )
) )
5149, 503anbi23d 1349 . . . . . 6  |-  ( z  =  ( f `  2o )  ->  ( ( ( f `  (/) )  =/=  ( f `  1o )  /\  ( f `  (/) )  =/=  z  /\  ( f `  1o )  =/=  z )  <->  ( (
f `  (/) )  =/=  ( f `  1o )  /\  ( f `  (/) )  =/=  ( f `
 2o )  /\  ( f `  1o )  =/=  ( f `  2o ) ) ) )
5251rspcev 2907 . . . . 5  |-  ( ( ( f `  2o )  e.  A  /\  ( ( f `  (/) )  =/=  ( f `
 1o )  /\  ( f `  (/) )  =/=  ( f `  2o )  /\  ( f `  1o )  =/=  (
f `  2o )
) )  ->  E. z  e.  A  ( (
f `  (/) )  =/=  ( f `  1o )  /\  ( f `  (/) )  =/=  z  /\  ( f `  1o )  =/=  z ) )
5322, 29, 36, 48, 52syl13anc 1273 . . . 4  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  ->  E. z  e.  A  ( ( f `  (/) )  =/=  ( f `
 1o )  /\  ( f `  (/) )  =/=  z  /\  ( f `
 1o )  =/=  z ) )
54 neeq2 2414 . . . . . . 7  |-  ( y  =  ( f `  1o )  ->  ( ( f `  (/) )  =/=  y  <->  ( f `  (/) )  =/=  ( f `
 1o ) ) )
55 biidd 172 . . . . . . 7  |-  ( y  =  ( f `  1o )  ->  ( ( f `  (/) )  =/=  z  <->  ( f `  (/) )  =/=  z ) )
56 neeq1 2413 . . . . . . 7  |-  ( y  =  ( f `  1o )  ->  ( y  =/=  z  <->  ( f `  1o )  =/=  z
) )
5754, 55, 563anbi123d 1346 . . . . . 6  |-  ( y  =  ( f `  1o )  ->  ( ( ( f `  (/) )  =/=  y  /\  ( f `
 (/) )  =/=  z  /\  y  =/=  z
)  <->  ( ( f `
 (/) )  =/=  (
f `  1o )  /\  ( f `  (/) )  =/=  z  /\  ( f `
 1o )  =/=  z ) ) )
5857rexbidv 2531 . . . . 5  |-  ( y  =  ( f `  1o )  ->  ( E. z  e.  A  ( ( f `  (/) )  =/=  y  /\  ( f `
 (/) )  =/=  z  /\  y  =/=  z
)  <->  E. z  e.  A  ( ( f `  (/) )  =/=  ( f `
 1o )  /\  ( f `  (/) )  =/=  z  /\  ( f `
 1o )  =/=  z ) ) )
5958rspcev 2907 . . . 4  |-  ( ( ( f `  1o )  e.  A  /\  E. z  e.  A  ( ( f `  (/) )  =/=  ( f `  1o )  /\  ( f `  (/) )  =/=  z  /\  ( f `  1o )  =/=  z ) )  ->  E. y  e.  A  E. z  e.  A  ( ( f `  (/) )  =/=  y  /\  ( f `  (/) )  =/=  z  /\  y  =/=  z ) )
6016, 53, 59syl2anc 411 . . 3  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  ->  E. y  e.  A  E. z  e.  A  ( ( f `  (/) )  =/=  y  /\  ( f `  (/) )  =/=  z  /\  y  =/=  z ) )
61 neeq1 2413 . . . . . 6  |-  ( x  =  ( f `  (/) )  ->  ( x  =/=  y  <->  ( f `  (/) )  =/=  y ) )
62 neeq1 2413 . . . . . 6  |-  ( x  =  ( f `  (/) )  ->  ( x  =/=  z  <->  ( f `  (/) )  =/=  z ) )
63 biidd 172 . . . . . 6  |-  ( x  =  ( f `  (/) )  ->  ( y  =/=  z  <->  y  =/=  z
) )
6461, 62, 633anbi123d 1346 . . . . 5  |-  ( x  =  ( f `  (/) )  ->  ( (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z )  <->  ( (
f `  (/) )  =/=  y  /\  ( f `
 (/) )  =/=  z  /\  y  =/=  z
) ) )
65642rexbidv 2555 . . . 4  |-  ( x  =  ( f `  (/) )  ->  ( E. y  e.  A  E. z  e.  A  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z )  <->  E. y  e.  A  E. z  e.  A  ( (
f `  (/) )  =/=  y  /\  ( f `
 (/) )  =/=  z  /\  y  =/=  z
) ) )
6665rspcev 2907 . . 3  |-  ( ( ( f `  (/) )  e.  A  /\  E. y  e.  A  E. z  e.  A  ( (
f `  (/) )  =/=  y  /\  ( f `
 (/) )  =/=  z  /\  y  =/=  z
) )  ->  E. x  e.  A  E. y  e.  A  E. z  e.  A  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )
6710, 60, 66syl2anc 411 . 2  |-  ( ( 3o  ~<_  A  /\  f : 3o -1-1-> A )  ->  E. x  e.  A  E. y  e.  A  E. z  e.  A  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z
) )
681, 67exlimddv 1945 1  |-  ( 3o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  E. z  e.  A  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   E.wrex 2509   (/)c0 3491   class class class wbr 4083   Ord word 4453   suc csuc 4456   omcom 4682   -->wf 5314   -1-1->wf1 5315   ` cfv 5318   1oc1o 6561   2oc2o 6562   3oc3o 6563    ~<_ cdom 6894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fv 5326  df-1o 6568  df-2o 6569  df-3o 6570  df-dom 6897
This theorem is referenced by:  pw1ndom3  16383
  Copyright terms: Public domain W3C validator