| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 3dom | Unicode version | ||
| Description: A set that dominates ordinal 3 has at least 3 different members. (Contributed by Jim Kingdon, 12-Feb-2026.) |
| Ref | Expression |
|---|---|
| 3dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6906 |
. 2
| |
| 2 | f1f 5533 |
. . . . 5
| |
| 3 | 2 | adantl 277 |
. . . 4
|
| 4 | 0lt2o 6595 |
. . . . . . 7
| |
| 5 | elelsuc 4500 |
. . . . . . 7
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . . 6
|
| 7 | df-3o 6570 |
. . . . . 6
| |
| 8 | 6, 7 | eleqtrri 2305 |
. . . . 5
|
| 9 | 8 | a1i 9 |
. . . 4
|
| 10 | 3, 9 | ffvelcdmd 5773 |
. . 3
|
| 11 | 1lt2o 6596 |
. . . . . . . 8
| |
| 12 | elelsuc 4500 |
. . . . . . . 8
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . 7
|
| 14 | 13, 7 | eleqtrri 2305 |
. . . . . 6
|
| 15 | 14 | a1i 9 |
. . . . 5
|
| 16 | 3, 15 | ffvelcdmd 5773 |
. . . 4
|
| 17 | 2onn 6675 |
. . . . . . . . . 10
| |
| 18 | 17 | elexi 2812 |
. . . . . . . . 9
|
| 19 | 18 | sucid 4508 |
. . . . . . . 8
|
| 20 | 19, 7 | eleqtrri 2305 |
. . . . . . 7
|
| 21 | 20 | a1i 9 |
. . . . . 6
|
| 22 | 3, 21 | ffvelcdmd 5773 |
. . . . 5
|
| 23 | 1n0 6586 |
. . . . . . . . . 10
| |
| 24 | 23 | nesymi 2446 |
. . . . . . . . 9
|
| 25 | f1veqaeq 5899 |
. . . . . . . . 9
| |
| 26 | 24, 25 | mtoi 668 |
. . . . . . . 8
|
| 27 | 8, 14, 26 | mpanr12 439 |
. . . . . . 7
|
| 28 | 27 | neqned 2407 |
. . . . . 6
|
| 29 | 28 | adantl 277 |
. . . . 5
|
| 30 | 2on0 6578 |
. . . . . . . . . 10
| |
| 31 | 30 | nesymi 2446 |
. . . . . . . . 9
|
| 32 | f1veqaeq 5899 |
. . . . . . . . 9
| |
| 33 | 31, 32 | mtoi 668 |
. . . . . . . 8
|
| 34 | 8, 20, 33 | mpanr12 439 |
. . . . . . 7
|
| 35 | 34 | neqned 2407 |
. . . . . 6
|
| 36 | 35 | adantl 277 |
. . . . 5
|
| 37 | nnord 4704 |
. . . . . . . . . . . . 13
| |
| 38 | 17, 37 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 39 | ordirr 4634 |
. . . . . . . . . . . 12
| |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . . . . 11
|
| 41 | eleq1 2292 |
. . . . . . . . . . 11
| |
| 42 | 40, 41 | mtbiri 679 |
. . . . . . . . . 10
|
| 43 | 11, 42 | mt2 643 |
. . . . . . . . 9
|
| 44 | f1veqaeq 5899 |
. . . . . . . . 9
| |
| 45 | 43, 44 | mtoi 668 |
. . . . . . . 8
|
| 46 | 14, 20, 45 | mpanr12 439 |
. . . . . . 7
|
| 47 | 46 | neqned 2407 |
. . . . . 6
|
| 48 | 47 | adantl 277 |
. . . . 5
|
| 49 | neeq2 2414 |
. . . . . . 7
| |
| 50 | neeq2 2414 |
. . . . . . 7
| |
| 51 | 49, 50 | 3anbi23d 1349 |
. . . . . 6
|
| 52 | 51 | rspcev 2907 |
. . . . 5
|
| 53 | 22, 29, 36, 48, 52 | syl13anc 1273 |
. . . 4
|
| 54 | neeq2 2414 |
. . . . . . 7
| |
| 55 | biidd 172 |
. . . . . . 7
| |
| 56 | neeq1 2413 |
. . . . . . 7
| |
| 57 | 54, 55, 56 | 3anbi123d 1346 |
. . . . . 6
|
| 58 | 57 | rexbidv 2531 |
. . . . 5
|
| 59 | 58 | rspcev 2907 |
. . . 4
|
| 60 | 16, 53, 59 | syl2anc 411 |
. . 3
|
| 61 | neeq1 2413 |
. . . . . 6
| |
| 62 | neeq1 2413 |
. . . . . 6
| |
| 63 | biidd 172 |
. . . . . 6
| |
| 64 | 61, 62, 63 | 3anbi123d 1346 |
. . . . 5
|
| 65 | 64 | 2rexbidv 2555 |
. . . 4
|
| 66 | 65 | rspcev 2907 |
. . 3
|
| 67 | 10, 60, 66 | syl2anc 411 |
. 2
|
| 68 | 1, 67 | exlimddv 1945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fv 5326 df-1o 6568 df-2o 6569 df-3o 6570 df-dom 6897 |
| This theorem is referenced by: pw1ndom3 16383 |
| Copyright terms: Public domain | W3C validator |