ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun8 Unicode version

Theorem dffun8 5346
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 5345. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dffun8  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
Distinct variable group:    x, y, A

Proof of Theorem dffun8
StepHypRef Expression
1 dffun7 5345 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
2 df-mo 2081 . . . . 5  |-  ( E* y  x A y  <-> 
( E. y  x A y  ->  E! y  x A y ) )
3 vex 2802 . . . . . . 7  |-  x  e. 
_V
43eldm 4920 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y  x A y )
5 pm5.5 242 . . . . . 6  |-  ( E. y  x A y  ->  ( ( E. y  x A y  ->  E! y  x A y )  <->  E! y  x A y ) )
64, 5sylbi 121 . . . . 5  |-  ( x  e.  dom  A  -> 
( ( E. y  x A y  ->  E! y  x A y )  <-> 
E! y  x A y ) )
72, 6bitrid 192 . . . 4  |-  ( x  e.  dom  A  -> 
( E* y  x A y  <->  E! y  x A y ) )
87ralbiia 2544 . . 3  |-  ( A. x  e.  dom  A E* y  x A y  <->  A. x  e.  dom  A E! y  x A y )
98anbi2i 457 . 2  |-  ( ( Rel  A  /\  A. x  e.  dom  A E* y  x A y )  <-> 
( Rel  A  /\  A. x  e.  dom  A E! y  x A
y ) )
101, 9bitri 184 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1538   E!weu 2077   E*wmo 2078    e. wcel 2200   A.wral 2508   class class class wbr 4083   dom cdm 4719   Rel wrel 4724   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-cnv 4727  df-co 4728  df-dm 4729  df-fun 5320
This theorem is referenced by:  funco  5358  funimaexglem  5404  funfveu  5640
  Copyright terms: Public domain W3C validator