ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun8 Unicode version

Theorem dffun8 5283
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 5282. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dffun8  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
Distinct variable group:    x, y, A

Proof of Theorem dffun8
StepHypRef Expression
1 dffun7 5282 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
2 df-mo 2046 . . . . 5  |-  ( E* y  x A y  <-> 
( E. y  x A y  ->  E! y  x A y ) )
3 vex 2763 . . . . . . 7  |-  x  e. 
_V
43eldm 4860 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y  x A y )
5 pm5.5 242 . . . . . 6  |-  ( E. y  x A y  ->  ( ( E. y  x A y  ->  E! y  x A y )  <->  E! y  x A y ) )
64, 5sylbi 121 . . . . 5  |-  ( x  e.  dom  A  -> 
( ( E. y  x A y  ->  E! y  x A y )  <-> 
E! y  x A y ) )
72, 6bitrid 192 . . . 4  |-  ( x  e.  dom  A  -> 
( E* y  x A y  <->  E! y  x A y ) )
87ralbiia 2508 . . 3  |-  ( A. x  e.  dom  A E* y  x A y  <->  A. x  e.  dom  A E! y  x A y )
98anbi2i 457 . 2  |-  ( ( Rel  A  /\  A. x  e.  dom  A E* y  x A y )  <-> 
( Rel  A  /\  A. x  e.  dom  A E! y  x A
y ) )
101, 9bitri 184 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1503   E!weu 2042   E*wmo 2043    e. wcel 2164   A.wral 2472   class class class wbr 4030   dom cdm 4660   Rel wrel 4665   Fun wfun 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-cnv 4668  df-co 4669  df-dm 4670  df-fun 5257
This theorem is referenced by:  funco  5295  funimaexglem  5338  funfveu  5568
  Copyright terms: Public domain W3C validator