| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffun8 | Unicode version | ||
| Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 5345. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| dffun8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun7 5345 |
. 2
| |
| 2 | df-mo 2081 |
. . . . 5
| |
| 3 | vex 2802 |
. . . . . . 7
| |
| 4 | 3 | eldm 4920 |
. . . . . 6
|
| 5 | pm5.5 242 |
. . . . . 6
| |
| 6 | 4, 5 | sylbi 121 |
. . . . 5
|
| 7 | 2, 6 | bitrid 192 |
. . . 4
|
| 8 | 7 | ralbiia 2544 |
. . 3
|
| 9 | 8 | anbi2i 457 |
. 2
|
| 10 | 1, 9 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-cnv 4727 df-co 4728 df-dm 4729 df-fun 5320 |
| This theorem is referenced by: funco 5358 funimaexglem 5404 funfveu 5640 |
| Copyright terms: Public domain | W3C validator |