ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnv3 Unicode version

Theorem funcnv3 5335
Description: A condition showing a class is single-rooted. (See funcnv 5334). (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
funcnv3  |-  ( Fun  `' A  <->  A. y  e.  ran  A E! x  e.  dom  A  x A y )
Distinct variable group:    x, y, A

Proof of Theorem funcnv3
StepHypRef Expression
1 dfrn2 4865 . . . . . 6  |-  ran  A  =  { y  |  E. x  x A y }
21abeq2i 2315 . . . . 5  |-  ( y  e.  ran  A  <->  E. x  x A y )
32biimpi 120 . . . 4  |-  ( y  e.  ran  A  ->  E. x  x A
y )
43biantrurd 305 . . 3  |-  ( y  e.  ran  A  -> 
( E* x  x A y  <->  ( E. x  x A y  /\  E* x  x A
y ) ) )
54ralbiia 2519 . 2  |-  ( A. y  e.  ran  A E* x  x A y  <->  A. y  e.  ran  A ( E. x  x A y  /\  E* x  x A y ) )
6 funcnv 5334 . 2  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
7 df-reu 2490 . . . 4  |-  ( E! x  e.  dom  A  x A y  <->  E! x
( x  e.  dom  A  /\  x A y ) )
8 vex 2774 . . . . . . 7  |-  x  e. 
_V
9 vex 2774 . . . . . . 7  |-  y  e. 
_V
108, 9breldm 4881 . . . . . 6  |-  ( x A y  ->  x  e.  dom  A )
1110pm4.71ri 392 . . . . 5  |-  ( x A y  <->  ( x  e.  dom  A  /\  x A y ) )
1211eubii 2062 . . . 4  |-  ( E! x  x A y  <-> 
E! x ( x  e.  dom  A  /\  x A y ) )
13 eu5 2100 . . . 4  |-  ( E! x  x A y  <-> 
( E. x  x A y  /\  E* x  x A y ) )
147, 12, 133bitr2i 208 . . 3  |-  ( E! x  e.  dom  A  x A y  <->  ( E. x  x A y  /\  E* x  x A
y ) )
1514ralbii 2511 . 2  |-  ( A. y  e.  ran  A E! x  e.  dom  A  x A y  <->  A. y  e.  ran  A ( E. x  x A y  /\  E* x  x A y ) )
165, 6, 153bitr4i 212 1  |-  ( Fun  `' A  <->  A. y  e.  ran  A E! x  e.  dom  A  x A y )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1514   E!weu 2053   E*wmo 2054    e. wcel 2175   A.wral 2483   E!wreu 2485   class class class wbr 4043   `'ccnv 4673   dom cdm 4674   ran crn 4675   Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-fun 5272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator