ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnv3 Unicode version

Theorem funcnv3 5225
Description: A condition showing a class is single-rooted. (See funcnv 5224). (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
funcnv3  |-  ( Fun  `' A  <->  A. y  e.  ran  A E! x  e.  dom  A  x A y )
Distinct variable group:    x, y, A

Proof of Theorem funcnv3
StepHypRef Expression
1 dfrn2 4767 . . . . . 6  |-  ran  A  =  { y  |  E. x  x A y }
21abeq2i 2265 . . . . 5  |-  ( y  e.  ran  A  <->  E. x  x A y )
32biimpi 119 . . . 4  |-  ( y  e.  ran  A  ->  E. x  x A
y )
43biantrurd 303 . . 3  |-  ( y  e.  ran  A  -> 
( E* x  x A y  <->  ( E. x  x A y  /\  E* x  x A
y ) ) )
54ralbiia 2468 . 2  |-  ( A. y  e.  ran  A E* x  x A y  <->  A. y  e.  ran  A ( E. x  x A y  /\  E* x  x A y ) )
6 funcnv 5224 . 2  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
7 df-reu 2439 . . . 4  |-  ( E! x  e.  dom  A  x A y  <->  E! x
( x  e.  dom  A  /\  x A y ) )
8 vex 2712 . . . . . . 7  |-  x  e. 
_V
9 vex 2712 . . . . . . 7  |-  y  e. 
_V
108, 9breldm 4783 . . . . . 6  |-  ( x A y  ->  x  e.  dom  A )
1110pm4.71ri 390 . . . . 5  |-  ( x A y  <->  ( x  e.  dom  A  /\  x A y ) )
1211eubii 2012 . . . 4  |-  ( E! x  x A y  <-> 
E! x ( x  e.  dom  A  /\  x A y ) )
13 eu5 2050 . . . 4  |-  ( E! x  x A y  <-> 
( E. x  x A y  /\  E* x  x A y ) )
147, 12, 133bitr2i 207 . . 3  |-  ( E! x  e.  dom  A  x A y  <->  ( E. x  x A y  /\  E* x  x A
y ) )
1514ralbii 2460 . 2  |-  ( A. y  e.  ran  A E! x  e.  dom  A  x A y  <->  A. y  e.  ran  A ( E. x  x A y  /\  E* x  x A y ) )
165, 6, 153bitr4i 211 1  |-  ( Fun  `' A  <->  A. y  e.  ran  A E! x  e.  dom  A  x A y )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1469   E!weu 2003   E*wmo 2004    e. wcel 2125   A.wral 2432   E!wreu 2434   class class class wbr 3961   `'ccnv 4578   dom cdm 4579   ran crn 4580   Fun wfun 5157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-reu 2439  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-fun 5165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator