ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoini2 Unicode version

Theorem isoini2 5943
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
isoini2.1  |-  C  =  ( A  i^i  ( `' R " { X } ) )
isoini2.2  |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } ) )
Assertion
Ref Expression
isoini2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C )  Isom  R ,  S  ( C ,  D ) )

Proof of Theorem isoini2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5931 . . . . . 6  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
2 f1of1 5571 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  H : A -1-1-> B )
31, 2syl 14 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-> B )
43adantr 276 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  H : A -1-1-> B )
5 isoini2.1 . . . . 5  |-  C  =  ( A  i^i  ( `' R " { X } ) )
6 inss1 3424 . . . . 5  |-  ( A  i^i  ( `' R " { X } ) )  C_  A
75, 6eqsstri 3256 . . . 4  |-  C  C_  A
8 f1ores 5587 . . . 4  |-  ( ( H : A -1-1-> B  /\  C  C_  A )  ->  ( H  |`  C ) : C -1-1-onto-> ( H " C ) )
94, 7, 8sylancl 413 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) : C -1-1-onto-> ( H " C
) )
10 isoini 5942 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H " ( A  i^i  ( `' R " { X } ) ) )  =  ( B  i^i  ( `' S " { ( H `  X ) } ) ) )
115imaeq2i 5066 . . . . 5  |-  ( H
" C )  =  ( H " ( A  i^i  ( `' R " { X } ) ) )
12 isoini2.2 . . . . 5  |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } ) )
1310, 11, 123eqtr4g 2287 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H " C )  =  D )
14 f1oeq3 5562 . . . 4  |-  ( ( H " C )  =  D  ->  (
( H  |`  C ) : C -1-1-onto-> ( H " C
)  <->  ( H  |`  C ) : C -1-1-onto-> D
) )
1513, 14syl 14 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  (
( H  |`  C ) : C -1-1-onto-> ( H " C
)  <->  ( H  |`  C ) : C -1-1-onto-> D
) )
169, 15mpbid 147 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) : C -1-1-onto-> D )
17 df-isom 5327 . . . . . . 7  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
1817simprbi 275 . . . . . 6  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )
1918adantr 276 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
20 ssralv 3288 . . . . . 6  |-  ( C 
C_  A  ->  ( A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
2120ralimdv 2598 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. x  e.  A  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
227, 19, 21mpsyl 65 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  A  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
23 ssralv 3288 . . . 4  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
247, 22, 23mpsyl 65 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
25 fvres 5651 . . . . . . 7  |-  ( x  e.  C  ->  (
( H  |`  C ) `
 x )  =  ( H `  x
) )
26 fvres 5651 . . . . . . 7  |-  ( y  e.  C  ->  (
( H  |`  C ) `
 y )  =  ( H `  y
) )
2725, 26breqan12d 4099 . . . . . 6  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( ( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y )  <->  ( H `  x ) S ( H `  y ) ) )
2827bibi2d 232 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( ( x R y  <->  ( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) )  <->  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
2928ralbidva 2526 . . . 4  |-  ( x  e.  C  ->  ( A. y  e.  C  ( x R y  <-> 
( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) )  <->  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
3029ralbiia 2544 . . 3  |-  ( A. x  e.  C  A. y  e.  C  (
x R y  <->  ( ( H  |`  C ) `  x ) S ( ( H  |`  C ) `
 y ) )  <->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )
3124, 30sylibr 134 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( ( H  |`  C ) `  x ) S ( ( H  |`  C ) `
 y ) ) )
32 df-isom 5327 . 2  |-  ( ( H  |`  C )  Isom  R ,  S  ( C ,  D )  <-> 
( ( H  |`  C ) : C -1-1-onto-> D  /\  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) ) ) )
3316, 31, 32sylanbrc 417 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C )  Isom  R ,  S  ( C ,  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508    i^i cin 3196    C_ wss 3197   {csn 3666   class class class wbr 4083   `'ccnv 4718    |` cres 4721   "cima 4722   -1-1->wf1 5315   -1-1-onto->wf1o 5317   ` cfv 5318    Isom wiso 5319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator