ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoini2 Unicode version

Theorem isoini2 5888
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
isoini2.1  |-  C  =  ( A  i^i  ( `' R " { X } ) )
isoini2.2  |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } ) )
Assertion
Ref Expression
isoini2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C )  Isom  R ,  S  ( C ,  D ) )

Proof of Theorem isoini2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5876 . . . . . 6  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
2 f1of1 5521 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  H : A -1-1-> B )
31, 2syl 14 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-> B )
43adantr 276 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  H : A -1-1-> B )
5 isoini2.1 . . . . 5  |-  C  =  ( A  i^i  ( `' R " { X } ) )
6 inss1 3393 . . . . 5  |-  ( A  i^i  ( `' R " { X } ) )  C_  A
75, 6eqsstri 3225 . . . 4  |-  C  C_  A
8 f1ores 5537 . . . 4  |-  ( ( H : A -1-1-> B  /\  C  C_  A )  ->  ( H  |`  C ) : C -1-1-onto-> ( H " C ) )
94, 7, 8sylancl 413 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) : C -1-1-onto-> ( H " C
) )
10 isoini 5887 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H " ( A  i^i  ( `' R " { X } ) ) )  =  ( B  i^i  ( `' S " { ( H `  X ) } ) ) )
115imaeq2i 5020 . . . . 5  |-  ( H
" C )  =  ( H " ( A  i^i  ( `' R " { X } ) ) )
12 isoini2.2 . . . . 5  |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } ) )
1310, 11, 123eqtr4g 2263 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H " C )  =  D )
14 f1oeq3 5512 . . . 4  |-  ( ( H " C )  =  D  ->  (
( H  |`  C ) : C -1-1-onto-> ( H " C
)  <->  ( H  |`  C ) : C -1-1-onto-> D
) )
1513, 14syl 14 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  (
( H  |`  C ) : C -1-1-onto-> ( H " C
)  <->  ( H  |`  C ) : C -1-1-onto-> D
) )
169, 15mpbid 147 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) : C -1-1-onto-> D )
17 df-isom 5280 . . . . . . 7  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
1817simprbi 275 . . . . . 6  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )
1918adantr 276 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
20 ssralv 3257 . . . . . 6  |-  ( C 
C_  A  ->  ( A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
2120ralimdv 2574 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. x  e.  A  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
227, 19, 21mpsyl 65 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  A  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
23 ssralv 3257 . . . 4  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
247, 22, 23mpsyl 65 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
25 fvres 5600 . . . . . . 7  |-  ( x  e.  C  ->  (
( H  |`  C ) `
 x )  =  ( H `  x
) )
26 fvres 5600 . . . . . . 7  |-  ( y  e.  C  ->  (
( H  |`  C ) `
 y )  =  ( H `  y
) )
2725, 26breqan12d 4060 . . . . . 6  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( ( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y )  <->  ( H `  x ) S ( H `  y ) ) )
2827bibi2d 232 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( ( x R y  <->  ( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) )  <->  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
2928ralbidva 2502 . . . 4  |-  ( x  e.  C  ->  ( A. y  e.  C  ( x R y  <-> 
( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) )  <->  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
3029ralbiia 2520 . . 3  |-  ( A. x  e.  C  A. y  e.  C  (
x R y  <->  ( ( H  |`  C ) `  x ) S ( ( H  |`  C ) `
 y ) )  <->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )
3124, 30sylibr 134 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( ( H  |`  C ) `  x ) S ( ( H  |`  C ) `
 y ) ) )
32 df-isom 5280 . 2  |-  ( ( H  |`  C )  Isom  R ,  S  ( C ,  D )  <-> 
( ( H  |`  C ) : C -1-1-onto-> D  /\  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) ) ) )
3316, 31, 32sylanbrc 417 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C )  Isom  R ,  S  ( C ,  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484    i^i cin 3165    C_ wss 3166   {csn 3633   class class class wbr 4044   `'ccnv 4674    |` cres 4677   "cima 4678   -1-1->wf1 5268   -1-1-onto->wf1o 5270   ` cfv 5271    Isom wiso 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator