Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isoini2 | Unicode version |
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.) |
Ref | Expression |
---|---|
isoini2.1 | |
isoini2.2 |
Ref | Expression |
---|---|
isoini2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isof1o 5786 | . . . . . 6 | |
2 | f1of1 5441 | . . . . . 6 | |
3 | 1, 2 | syl 14 | . . . . 5 |
4 | 3 | adantr 274 | . . . 4 |
5 | isoini2.1 | . . . . 5 | |
6 | inss1 3347 | . . . . 5 | |
7 | 5, 6 | eqsstri 3179 | . . . 4 |
8 | f1ores 5457 | . . . 4 | |
9 | 4, 7, 8 | sylancl 411 | . . 3 |
10 | isoini 5797 | . . . . 5 | |
11 | 5 | imaeq2i 4951 | . . . . 5 |
12 | isoini2.2 | . . . . 5 | |
13 | 10, 11, 12 | 3eqtr4g 2228 | . . . 4 |
14 | f1oeq3 5433 | . . . 4 | |
15 | 13, 14 | syl 14 | . . 3 |
16 | 9, 15 | mpbid 146 | . 2 |
17 | df-isom 5207 | . . . . . . 7 | |
18 | 17 | simprbi 273 | . . . . . 6 |
19 | 18 | adantr 274 | . . . . 5 |
20 | ssralv 3211 | . . . . . 6 | |
21 | 20 | ralimdv 2538 | . . . . 5 |
22 | 7, 19, 21 | mpsyl 65 | . . . 4 |
23 | ssralv 3211 | . . . 4 | |
24 | 7, 22, 23 | mpsyl 65 | . . 3 |
25 | fvres 5520 | . . . . . . 7 | |
26 | fvres 5520 | . . . . . . 7 | |
27 | 25, 26 | breqan12d 4005 | . . . . . 6 |
28 | 27 | bibi2d 231 | . . . . 5 |
29 | 28 | ralbidva 2466 | . . . 4 |
30 | 29 | ralbiia 2484 | . . 3 |
31 | 24, 30 | sylibr 133 | . 2 |
32 | df-isom 5207 | . 2 | |
33 | 16, 31, 32 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 cin 3120 wss 3121 csn 3583 class class class wbr 3989 ccnv 4610 cres 4613 cima 4614 wf1 5195 wf1o 5197 cfv 5198 wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |