ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoini2 Unicode version

Theorem isoini2 5911
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
isoini2.1  |-  C  =  ( A  i^i  ( `' R " { X } ) )
isoini2.2  |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } ) )
Assertion
Ref Expression
isoini2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C )  Isom  R ,  S  ( C ,  D ) )

Proof of Theorem isoini2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5899 . . . . . 6  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
2 f1of1 5543 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  H : A -1-1-> B )
31, 2syl 14 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-> B )
43adantr 276 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  H : A -1-1-> B )
5 isoini2.1 . . . . 5  |-  C  =  ( A  i^i  ( `' R " { X } ) )
6 inss1 3401 . . . . 5  |-  ( A  i^i  ( `' R " { X } ) )  C_  A
75, 6eqsstri 3233 . . . 4  |-  C  C_  A
8 f1ores 5559 . . . 4  |-  ( ( H : A -1-1-> B  /\  C  C_  A )  ->  ( H  |`  C ) : C -1-1-onto-> ( H " C ) )
94, 7, 8sylancl 413 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) : C -1-1-onto-> ( H " C
) )
10 isoini 5910 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H " ( A  i^i  ( `' R " { X } ) ) )  =  ( B  i^i  ( `' S " { ( H `  X ) } ) ) )
115imaeq2i 5039 . . . . 5  |-  ( H
" C )  =  ( H " ( A  i^i  ( `' R " { X } ) ) )
12 isoini2.2 . . . . 5  |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } ) )
1310, 11, 123eqtr4g 2265 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H " C )  =  D )
14 f1oeq3 5534 . . . 4  |-  ( ( H " C )  =  D  ->  (
( H  |`  C ) : C -1-1-onto-> ( H " C
)  <->  ( H  |`  C ) : C -1-1-onto-> D
) )
1513, 14syl 14 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  (
( H  |`  C ) : C -1-1-onto-> ( H " C
)  <->  ( H  |`  C ) : C -1-1-onto-> D
) )
169, 15mpbid 147 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) : C -1-1-onto-> D )
17 df-isom 5299 . . . . . . 7  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
1817simprbi 275 . . . . . 6  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )
1918adantr 276 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
20 ssralv 3265 . . . . . 6  |-  ( C 
C_  A  ->  ( A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
2120ralimdv 2576 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. x  e.  A  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
227, 19, 21mpsyl 65 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  A  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
23 ssralv 3265 . . . 4  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
247, 22, 23mpsyl 65 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
25 fvres 5623 . . . . . . 7  |-  ( x  e.  C  ->  (
( H  |`  C ) `
 x )  =  ( H `  x
) )
26 fvres 5623 . . . . . . 7  |-  ( y  e.  C  ->  (
( H  |`  C ) `
 y )  =  ( H `  y
) )
2725, 26breqan12d 4075 . . . . . 6  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( ( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y )  <->  ( H `  x ) S ( H `  y ) ) )
2827bibi2d 232 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( ( x R y  <->  ( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) )  <->  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
2928ralbidva 2504 . . . 4  |-  ( x  e.  C  ->  ( A. y  e.  C  ( x R y  <-> 
( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) )  <->  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
3029ralbiia 2522 . . 3  |-  ( A. x  e.  C  A. y  e.  C  (
x R y  <->  ( ( H  |`  C ) `  x ) S ( ( H  |`  C ) `
 y ) )  <->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )
3124, 30sylibr 134 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( ( H  |`  C ) `  x ) S ( ( H  |`  C ) `
 y ) ) )
32 df-isom 5299 . 2  |-  ( ( H  |`  C )  Isom  R ,  S  ( C ,  D )  <-> 
( ( H  |`  C ) : C -1-1-onto-> D  /\  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) ) ) )
3316, 31, 32sylanbrc 417 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C )  Isom  R ,  S  ( C ,  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486    i^i cin 3173    C_ wss 3174   {csn 3643   class class class wbr 4059   `'ccnv 4692    |` cres 4695   "cima 4696   -1-1->wf1 5287   -1-1-onto->wf1o 5289   ` cfv 5290    Isom wiso 5291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator