| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isoini2 | Unicode version | ||
| Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.) |
| Ref | Expression |
|---|---|
| isoini2.1 |
|
| isoini2.2 |
|
| Ref | Expression |
|---|---|
| isoini2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isof1o 5931 |
. . . . . 6
| |
| 2 | f1of1 5571 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | isoini2.1 |
. . . . 5
| |
| 6 | inss1 3424 |
. . . . 5
| |
| 7 | 5, 6 | eqsstri 3256 |
. . . 4
|
| 8 | f1ores 5587 |
. . . 4
| |
| 9 | 4, 7, 8 | sylancl 413 |
. . 3
|
| 10 | isoini 5942 |
. . . . 5
| |
| 11 | 5 | imaeq2i 5066 |
. . . . 5
|
| 12 | isoini2.2 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3eqtr4g 2287 |
. . . 4
|
| 14 | f1oeq3 5562 |
. . . 4
| |
| 15 | 13, 14 | syl 14 |
. . 3
|
| 16 | 9, 15 | mpbid 147 |
. 2
|
| 17 | df-isom 5327 |
. . . . . . 7
| |
| 18 | 17 | simprbi 275 |
. . . . . 6
|
| 19 | 18 | adantr 276 |
. . . . 5
|
| 20 | ssralv 3288 |
. . . . . 6
| |
| 21 | 20 | ralimdv 2598 |
. . . . 5
|
| 22 | 7, 19, 21 | mpsyl 65 |
. . . 4
|
| 23 | ssralv 3288 |
. . . 4
| |
| 24 | 7, 22, 23 | mpsyl 65 |
. . 3
|
| 25 | fvres 5651 |
. . . . . . 7
| |
| 26 | fvres 5651 |
. . . . . . 7
| |
| 27 | 25, 26 | breqan12d 4099 |
. . . . . 6
|
| 28 | 27 | bibi2d 232 |
. . . . 5
|
| 29 | 28 | ralbidva 2526 |
. . . 4
|
| 30 | 29 | ralbiia 2544 |
. . 3
|
| 31 | 24, 30 | sylibr 134 |
. 2
|
| 32 | df-isom 5327 |
. 2
| |
| 33 | 16, 31, 32 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |